
Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 1

From UML Diagrams to Object Oriented Code

Liliana Favre
Isistan. Facultad de Ciencias Exactas

Universidad Nacional del Centro de la
Pcia. de Buenos Aires.

Tandil. Argentina
lfavre@necsus.com.ar

Abstract
Software reuse, the use of existing software artefacts or
knowledge to create new software, has two main pur-
poses: to increase the reliability of software and to re-
duce the cost of software development. The SRI model
for the definition of the structure of a reusable compo-
nent and an object oriented method with reuse based on
the model have been introduced in previous works. Our
current goal is to map design artefacts to object ori-
ented code. A rigorous method that bridges the gap
between UML diagrams and Eiffel is described. The
idea is to link UML diagrams with SRI components.
This will enable the simulation and execution of cor-
rection tests in an independent implementation way and
the subsequent transformation to efficient code.

Keywords: reusability; algebraic specifications; formal
methods; object oriented programming; object oriented
design.

1. Introduction
Reusability is the ability to use the same software elements
for constructing many different applications. From more re-
usable software we may expect improvements on timeliness,
efficiency, decreased maintenance effort, reliability and con-
sistency. Making software reusable is a way to preserve the
inventions of the best developers.

Most current approaches to object oriented reusability are
based on empirical methods. Our work hypothesis is that the
development of rigorous methods for their systematic reuse
permit building “correct” and efficient object oriented
formal specification of reusable components and the
software. If, instead of being developed for just one project, a
software element has the potential of serving again and again

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the CSIT copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Institute for Contemporary Education JMSUICE. To copy otherwise, or to
republish, requires a fee and/or special permission from the JMSUICE.

Proceedings of the Workshop on Computer Science and
Information Technologies CSIT’99
Moscow, Russia, 1999

for many projects, it becomes economically attractive to
submit it to the best possible quality techniques, such as for-
mal specification of components.

There are many benefits to applying formal specifications to
software reuse:

• A formal specification describes the function of a soft-
ware piece free from most implementation details.

• Formal specifications and their associated formal system
provide a basis for automated reuse.

Reusable software should be retrievable. There may be no
components in the software library that do exactly what is
wanted; therefore, it is necessary to find one or more compo-
nents that can be easily modified to do the job.

Taking into account the above the SRI model for the defini-
tion of the structure of a reusable component and a rigorous
method for the reusability of object oriented software were
proposed [4].

The SRI model takes advantage of the power given by alge-
braic formalism to describe behaviour in an abstract way
while respecting the domain classification principles adopted
for the design of the class libraries in object oriented lan-
guages. It allows us to describe object hierarchies at three
different abstraction levels: identification, realisation and
implementation.

The identification level integrates hierarchies of incomplete
algebraic specifications by means of formal subtyping rela-
tions. The realisation level links hierarchies of complete al-
gebraic specifications by means of formal realisation rela-
tions and the implementation level integrates hierarchies of
object oriented class schemes, that respond to a same realisa-
tion by means of implementation relations. The letters that
give the name to the model refer to these three types of rela-
tions: subtype, realisation and implementation. A reusability
method, based in the transformation of a library of SRI com-
ponents by means of renaming, restriction, composition and
extension operators, was presented.

In order to show the feasibility of our approach a prototype
(TAROOL) was implemented [4]. It could be refined to be a
practical tool for class reuse. The prototype assists in: specifi-
cation editing, analysis of algebraic specifications, specifica-

From UML Diagrams to Object oriented Code2

tion validation, component reuse and transformation of speci-
fications to Eiffel code.

The following objective in our investigation was to integrate
the SRI model with object oriented analysis and design mod-
els. UML (Unified Modeling Language) has emerged as a
de-facto standard for expressing these models. It was pro-
posed by Booch, Rumbaugh and Jacobson [17].

This language is formally described in terms of itself and is
based on seven kinds of graphical diagrams. UML is a visual
language to model; it does not have visual and semantic sup-
port to replace the programming languages. UML must be
integrated with object oriented programming languages. Then
the integration of the diagrams provided by it with the SRI
model was analysed.

Which is the relation between the UML diagrams and object
oriented languages? Concepts such as Class and Package
exist in both the UML and in many object oriented lan-
guages. The UML diagrams structure classes starting from
generalisation, association and aggregation relations. In the
object oriented languages the basic relations to structure ob-
jects are inheritance and client. The first one enables ex-
pressing generalisation (the refinement of classes to sub-
classes), the second one permits certain types of aggregation.
The object oriented languages do not contain syntax or se-
mantics to express all kinds of relations directly. The latter is
an essential difference between both.

This work proposes a method, based on the SRI model, that
bridges the gap between UML diagrams and object oriented
languages. The SRI model serves as nexus between these two
levels.

The emphasis in this presentation is given to the integration
of UML static models with the SRI model. Within the
framework of our approach, two UML diagrams are of spe-
cial interest: Class Diagrams and Collaboration Diagrams.
The design transformation to code is done starting from a
SRI component library.

 2.Motivation
In the purest form of object technology, only two kinds of
relations exist: client and inheritance. The client relation cov-
ers many different forms of dependency. For example, aggre-
gation, generic dependency and reference dependency. In-
heritance can be viewed as a relation between classes, which
suggests the way in which classes can be arranged in hierar-
chies.

Meyer [12] presents an inheritance taxonomy that includes
twelve different categories, conveniently grouped into three
families: model inheritance, variation inheritance and soft-
ware inheritance. The classification is based on the observa-
tion that any software system reflects an external model itself
connected with some outside reality in the software applica-
tion domain. It is distinguished as follows:

• “Model inheritance, reflecting “is-a” relations between
abstractions.

• Software inheritance, expressing relations within the
software, with no obvious counterpart in the model.

• Variation inheritance, which describes a class through its
differences with another class” [12].

To obtain flexibility, object oriented languages provide ab-
stract classes. They also provide mechanisms for dynamic
binding and polymorphism, method redeclaration, renaming
and class interface restriction. They are applied in subclass
relations that extend the hierarchy. Abstract classes classify
groups of related types, capture incomplete common behav-
iour, and play an important role in connection with dynamic
binding and polymorphism. They also have purely imple-
mentation-related uses. Eiffel provides deferred classes as the
mechanism to support abstract classes.

Mechanisms of object oriented languages have different se-
mantics in class hierarchies. For example, abstract classes
defer behaviour and implementation decisions in classes
whose behaviour is completely defined. For example, the
class ARRAYED-STACK, present in Eiffel hierarchy CON-
TAINER, describes stacks implemented as arrays. This class
is a descendent of both STACK (a deferred class that de-
scribes general stacks) and ARRAY. STACK gives AR-
RAYED-STACK its abstract interface, whereas ARRAY
gives its implementation. The role of two parents is definitely
not symmetric.

In the component model of object oriented languages, the
different types of relations are not made explicit. A pro-
grammer must distinguish the different types of relations pre-
sent in a hierarchy by analysing its code. Many users of object
oriented classes perceive this as one of the major obstacles to
reuse. They want to understand the relations between classes
and operations without having to study implementation de-
tails.

Other aspects to be considered are:

• Dynamic binding does not allow us to precisely infer
either the types of objects in the arguments or the result
of a method. To understand the behaviour of a class, the
programmer must access the code of several subclasses
that interact with one another.

• A method can be redefined in the subclasses to adapt it to
a new context without preserving behaviour.

• Object oriented design distributes the program functions
among several classes. Then the designer’s strategies are
often dispersed through several non-contiguous program
segments.

UML class diagrams describe structured objects. This struc-
ture is based on different relations: generalisation, aggrega-
tion and association.

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 3

The object oriented languages express generalisation through
the inheritance mechanism and certain types of aggregation
through client relations. However, they do not possess an
explicit syntax to express all kinds of associations. These are
buried in the instance variables and in the class methods: then
the structure of system is not transparent. This disturbs their
maintenance and mainly their reusability.

Many existing programming languages limit implementation
options. For example, EIFFEL has only one way to represent
associations, namely object references in one, the other or
both of the associated classes.

It is worth considering the associations as semantic construc-
tions of equal weight to the classes and the generalisation and
not only as implementation constructions. The associations
allow abstracting the interaction between classes in the de-
sign of large systems. The main decisions regarding effi-
ciency aspects are related to implementations of relations.
Note that associations are important for the design of large
systems because they affect the partitioning of a system in
modules.

3. Background

3.1. Specifying Reusable Components
Object classes can be specified in an implementation inde-
pendent way by using structured algebraic specifications of
data types. The basic idea of the algebraic approach consists
of describing data structures by just giving the names of the
different sets of data, the names of the basic functions and
their properties, which are described by formulas (mostly
equations). A (many sorted) signature Σ is a pair (S, F)
where S is a set of sorts and F is a set of function symbols.

We have selected GSBL+ as the specification language. This
language extends GSBL [1, 2] with mechanisms for error
treatment, explicit parameterisation and restriction of specifi-
cations [4].

In GSBL+, we use two algebraic specification techniques for
defining the set of values belonging to the sort associated
with a type. The first technique is based on a set of first order
formulae and the second one on a set of equations.

The first specification technique leaves much freedom to the
specifier in the elaboration of a type specification However,
GSBL+ also supports another style of specification based on

the “term generation principle” used in a more classical ap-
proach of algebraic specification based on equations. In this
approach, it should be possible to associate a term with each
value belonging to the sort. This style is sometimes difficult
to adopt at the requirements level because of the identifica-
tion of generators operations associated with the generation
of all the values of a sort and the restriction on formulas to be
equations between terms (equational logic).

The mechanism of the language that creates the new specifi-
cation is the class definition (Figure 1).

In GSBL+ strictly generic components can be distinguished
by means of explicit parameterisation. The EXPORT clause
describes which names (of sorts and operations defined in-
side the class) are visible from outside.

GSBL+ specifications are considered structured objects. This
structure is based on two relations associated to two specifi-
cation building mechanisms. The OVER relation defines
which specifications are considered components of a given
specification. The specification is extended by the compo-
nents declared in <overlist>. Similarly, the SUBCLASS-OF
relation defines which specifications must be considered sub-
class or superclasses of a given specification. Note that the
SUBCLASS-OF relation is conceptually linked to the in-
heritance relation in the object oriented level and the OVER
relation to the client one.

The WITH clause declares new sorts, operations or equations
that are incompletely defined, i.e. there are not enough equa-
tions to specify the new operations or there are not enough
operations to “generate” all values of a given sort. A GSBL+
specification is implicitly parameterised in its incomplete
parts.

The DEFINE clause either declares new sorts, operations or
equations, that are completely defined, or completes the defi-
nition of some sort or operation, belonging to some super-
class, that was not completely defined.

A class may introduce any number of new sorts; if one of
them has the same name as the class, this sort is considered
the sort of interest of the class.

The syntax of a class specified with the second technique
includes the BASIC CONSTRUCTOR clause that refers to
generator operations and does not contain WITH clause.

From UML Diagrams to Object oriented Code4

Local instances of a class may also be defined in the OVER
clause and SUBCLASS-OF clause with the following syntax:

CLASS T
OVER A: B[s’1:s1......,o’1:o1.....]
SUBCLASS-OF C: D[s’2:s2;o’2:o2....]

in which every sort si and operation oi are renamed as s’i and
o’i respectively. For example, the OVER clause has the fol-
lowing effects: a class A is locally created within the scope of
T; A is defined by renaming, according to the declaration, the
sorts and operations. A becomes a local component of T.

As examples, we propose in Figure 2. an incomplete specifi-
cation of a class Traversable and a complete specification of
a class Sequence.

3.2. The SRI Model
Considering the issues described in section 2., we introduce
the SRI model for the definition of the structure of a reusable
component. It describes object classes at three conceptual
levels: identification, realisation and implementation.

Why the SRI model? Software reusability takes many differ-
ent requirements into account, some of which are abstract and
conceptual, whereas others are concrete and bound to imple-
mentation properties. Reusable components must be specified
in an appropriate way. For example, at more abstract levels,
we need descriptions satisfying three conditions [12]:

• "They should be precise and unambiguous.

• They should be complete or at least as complete as we
want, in each case.

• They should not overspecify."

 Identification level reconciles the need for precision and
completeness in abstract specifications with the desire to
avoid overspecification.

Adaptation of reusable components, which consumes a large
portion of software cost, is penalised by overdependency of
components on the physical structure of data. The realisation
level in the SRI model allows us to distinguish design deci-
sions related to the choice of physical structure data.

The identification level describes a hierarchy of incomplete
specifications in GSBL+ as an acyclic graph G=(V,E), where
V is a non-empty set of incomplete algebraic specifications in
GSBL+ and E ⊆ V x V defines a subtype relation between
specifications. In this context, it must be verified that if P(x)
is a property provable about objects x of type T, then P(y)
must be verified for every object y of type S, where S is sub-
type of T [11].

Every leaf in the identification level is associated with a sub-
component at the realisation level. A realisation subcompo-
nent is a tree of complete specifications in GSBL+:

• The root is the most abstract definition.

• The internal nodes correspond to different realisations of
the root.

• Leaves correspond to subcomponents at the implementa-
tion level.

If E and E1 are specifications, then E can be realised by E1
(written E~~~>E1) if E and E1 have the same signature and
every model of E1 is a model of E [8]. Every specification at
the realisation level corresponds to a subcomponent at the
implementation level, which groups a set of implementation
schemes associated with a class in an object oriented lan-
guage. This level defines implementation relations denoted by
the symbol " ≈≈≈>".

Incomplete Specification Syntax Complete Specification Syntax

CLASS class-name[<parameterlist>]
EXPORT <exportlist>
OVER <overlist>
SUBCLASS-OF <subclasslist>
WITH
SORTS <sortlist>
OPS <opslist>
EQS <varlist> <equationlist>
DEFINE
SORTS <sortlist>
OPS <opslist>
EQS <varlist> <equationlist>
END-CLASS

CLASS class-name[<parameterlist>]
EXPORT <exportlist>
BASIC CONSTRUCTORS <constructorlist>
OVER <overlist>
SUBCLASS-OF <subclasslist>
DEFINE
SORTS <sortlist>
OPS <opslist>
EQS <varlist> <equationlist>
END-CLASS

Figure 1. GSBL+ Class Syntax

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 5

Eiffel was chosen as the language to prove the power of the
model. It is used as a tool for the design and implementation
of object oriented code. It is reflected in the powerful “Design
by Contract” principle, which is based on the protection of
both sides of the contract. It protects the client by specifying
how much should be done, and the contractor by specifying
how little is acceptable. Contracts imply obligations and
benefits for both parties, and are made explicit by the use of
assertions. They allow us to integrate axioms of specification
levels with the implementation level.

There is a relation between the other two levels and the im-
plementation level:

• Every incomplete GSBL+ class in the identification level
is associated with a deferred Eiffel class that matches the
specified incomplete behaviour.

• Internal nodes of the realisation level components, in-
cluding the root, correspond to an abstract class that de-
fers implementation in the object oriented level.

• Leaves in the realisation level correspond to complete
Eiffel classes.

• The implementation level can contain classes that are not
related to the specifications in the identification and re-
alisation levels. They reflect implementation aspects.

The transformation operators for specifications in GSBL+
and their extension to SRI components were defined. The
transformation operators are informally described as follows:

Syntactic renaming: changes the name of sorts or operations.

Restriction: forget those parts of a specification, which are
not necessary for the actual application.

Extension: adds sorts, operations or axioms to a specification.

Composition: combines two or more specifications in only
one.

[4] includes a formal description of the transformation-
building operators.

In order to integrate the SRI model with UML diagrams, this
work proposes to extend the identification level with an OCL
view. OCL (Object Constraint Language Specification) is a
formal language developed as business-modelling language
within the IBM Insurance Division and it has its roots in the
Syntropy method [16].

CLASS Traversable [G:ANY]
EXPORT first, rest, end
OVER Boolean
SUBCLASS-OF Container
WITH
SORTS Traversable
OPS first: Traversable -> G
rest: Traversable-> Traversable
end: Traversable -> Boolean
END-CLASS

CLASS Sequence[element:ANY]
EXPORT emptyseq, put, empty?, first, rest,...
BASIC CONSTRUCTORS emptyseq, put
SUBCLASS-OF Collection
OVER Boolean
DEFINE
SORTS Sequence
OPS
emptyseq: -> Sequence
put: Sequence x element -> Sequence
empty? : Sequence-> Boolean
first: Sequence(s) -> element
 pre: not empty?(s)
rest:Sequence(s)->Sequence
 pre: not empty?(s)
..............
EQS{c:Sequence; e:element}
empty?(emptyseq) = TRUE
empty?(put(c,e)) = FALSE
first(put(c,e))= e
rest(put(c,e))=c
.........
END-CLASS

Figure 2. GSBL+ Specifications

From UML Diagrams to Object oriented Code6

The specification in OCL provides the user with the possibil-
ity of accomplishing the component identification from the
UML diagrams without enforcing it to a change of specifica-
tion formalism. The algebraic view will allow early valida-
tions and to automate the components' transformation.

The UML users can make use of OCL to specify constraints
and other expressions associated to their models. It can also
be applied to specify invariants on classes, to describe pre-
conditons and postconditions on operations and methods, to
specify constraints on operations and as a navigation lan-
guage.

The integration of UML models with object oriented lan-
guages requires orienting the reuse from components library
whose taxonomy is conformed to the OCL one.

Figure 3. shows a component CONTAINER. All specifica-
tions that describe “containers” are descendants of an incom-
plete specification (CONTAINER-I). Every leaf in the identi-
fication level is associated with a subcomponent in the reali-
sation level. For example SET-C is a leaf that links different
realisations: SET-TREE, SET-LIST, SET-ARRAY and SET-
LINK. These are associated with subcomponents in the im-
plementation level that represent concrete classes.

4. The Component Relation
A special type of SRI component is RELATION. The SRI
model allows us to represent the meaning of the relation
rather than its implementation. Relation taxonomy starting
from the SRI model is presented here. The identification
level describes the different relations through incomplete
specifications. These are classified according to:

• Its degree (unary, binary, ternary and in general as n-ary)

• Its kind (Aggregation, composition, association). The
degree restricts the relation type; for example one binary
association could be an aggregation or an association.
An aggregation can be “shared” or “composite”. If it is
an association it can be a qualified association or a class
association.

• Its navigability, for example a binary association can be
unidirectional or bidirectional.

• For its connectivity (one-to-one, one-to-many, many-to-
many, etc)

implementation
relation

IMPLEMENTATION LEVEL

REALISATION LEVEL

realisation
relation

Classes

.

. . .

IDENTIFICATION LEVEL

subtype
relation incomplete

algebraic
specification

Container-I
Traversable-I

Collection-I

. . . Set-I
Subset-ISet-C

-C

-I

complete
algebraic
specification

⇓⇓

⇓⇓

Set

Set-Tree Set-List

. . .

. . .

A1
A2

. . .

L2
L1

. . .
. . .

Set-Array Set-Link

Figure 3. Component Container

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 7

The realisation level describes a hierarchy of complete speci-
fications associated to different realisations. For example for
an association (binary, bidirectional and many-to-many) dif-
ferent realisations through hashing, sequences or trees could
be associated.

The implementation level associates each leaf of the realisa-
tion level to a concrete class scheme that must be instantiated
with the schemes of concrete classes that intervene in the
relation.

Figure 4. partially depicts a RELATION hierarchy.

5. Mapping Design to Code
The following is a description of a rigorous method for the
reusability of object oriented software. The UML artefacts
created during the design phase- the collaboration diagrams
and design class diagrams- will be used as input to the code
generation process. In UML, class diagrams statically repre-
sent the classes of the system and their relations. A collabo-
ration diagram shows the messages that are sent in response
to a method invocation.

The transformation process from design oriented class dia-
grams to class definitions, and from collaboration diagrams
to methods is relatively straightforward.

Implementation in an object oriented language requires writ-
ing code for:

• Class definition.

• Relations (associations, aggregation, composition).

• Method definition.

5.1. Defining a Class
For each class in the class diagram it is necessary to build
one algebraic specification, reusing other existing ones in the
components library. The component identification is done
starting from the OCL view of the identification level.

It might happen that:

• It is likely to identify one specification in the identifica-
tion level of a reusable component that can adapt itself to
the expected behaviour

• The class specification could be constructed from other
existing ones.

. .

.

. .

. .

RELATION

n-aryternary binaryunary

association

qualified
ordinary

unidirectional bidirectional

one-to-one n..mmany-to-many

many to many

hash table seq. table tree table

E1 E2

file Tablelinked Tablearray Table

IDENTIFICATION LEVEL

REALISATION LEVEL

IMPLEMENTATION LEVEL

Figure 4. Component RELATION

From UML Diagrams to Object oriented Code8

The transformation process has the following steps:

Identification

Formalise the decomposition of a specification into subspeci-
fications E1,E2,En. The decomposition is expressed
through a transformation pattern (E), which is based on
GSBL+ specifications. Specifications relate classes through
the OVER and SUBCLASS-OF clauses.

For each subspecification Ei identify a component Ci (in the
identification level) and a sequence s1,s2,....,sn of GSBL+
specifications that verify subtype relations. If sn is complete,
it is associated with the root of a subcomponent CRj in the
realisation level. If sn is not complete, select a leaf in Ci, (i.e.
those specifications for which there is a path in the graph
from sn) as a candidate to be transformed.

The identification of a component is correct if renaming,
restriction, extension and composition operators can modify it
to match the query Ei. The sorts and operations must be con-
nected with Ei’s by an appropriate rename. The renamed ver-
sion must be extended with sorts, operations and axioms. The
visible signature must be restricted to the visible signature of
Ei. Let OP1, OP2,OPk be the sequence of operators applied
to these transformations

Adaptation.

Select a leaf (LEAFj) in the subcomponent CRj and apply the
same sequence of operators used in the previous matching to
it, i.e. construct the specification OP1(........(OPK(LEAFj)....).

It is verified that OP1(....OPK(LEAFj))...) is a realisation of
OP1(.....(OPK(Root(CRj)......).

Select a class scheme ESQm in the subcomponent of the im-
plementation level whose root is LEAFj. Apply the sequence
of operators OP1, OP2 ,OPK to ESQm, i.e. construct the
specification OP1(........(OPk(ESQm)....). It is verified that
OP1(....OPK(ESQm))...) is an implementation of
OP1(.....(OPK(LEAFj)......).

Possible transformations are renaming, restriction, extension
and composition. Renaming and restrictions will be applied
to the identified class following the definition made for these
operators in the identification and realisation levels. It is
worth pointing out that this is done above the class “text”, not
through the Eiffel language mechanisms. For example, a
class A has an OVER relation with another class Reusable:

CLASS A

OVER Reusable(s1:x1; s2:x2;undefine:x3;s4:x4)

Let us consider the user selected a concrete scheme C for
Reusable. The classes x1, x2 and x4 are renamed in C by
s1,s2 and s4 respectively. The class x3 is deleted from C.
When making the "textual substitution" it must be taken into
account the fact that a transformation (renaming or restric-
tion) can not only affect the class A but also its hierarchy.

Composition

In this phase, the subspecifications Ei and their implementa-
tions are composed, according to the transformation pattern
E. The relation introduced in the pattern E using the clause
OVER will be translated into a client relation in Eiffel. The
relation expressed through the keyword SUBCLASS-OF in E
will become a subtype relation in Eiffel.

The construction of new classes by transformation of existing
ones implies access redefinition for client classes and inherit
features and, by this, the creation of an interface for the new
client or superclasses.

5.2. Defining Associations
In UML associations are describes as “structural relations
between objects of different types” [17]. For each relation
and starting from the information registered in class diagrams
and the component RELATION, identify a specification (in
the identification level), select a realisation (in the realisation
level) and select an implementation (in the implementation
level).

Implementation subcomponents express how to implement
associations and aggregations. They must be instantiated with
the schemes of concrete classes that intervene in the relation.

The schemes in the implementation level suggest:

• To include reference attributes in the class.

• To introduce an intermediate container or collection.

For example, a bidirectional binary association is usually
implemented as an attribute in each associated class contain-
ing a reference to the related object or to a set of related ob-
jects. If the association is “many to many" the best approach
is usually to implement the association as a different class, in
which each instance represents one link and its attributes.

Aggregations are transformed into reference attributes. Each
end of an association is called a role. Roles may optionally
have: name, multiplicity expression and navigability. If a role
name is present in a class diagram, it can be used as the basis
for the name of the reference attribute during code genera-
tion.

Multiplicity defines how many instances of a type A can be
associated with one instance of a type B, at a particular mo-
ment in time. It is usually evident from the multiplicity value
in a class diagram that a class must maintain visibility to a
group of others classes. In object oriented programming lan-
guages these relations are often implemented with the intro-
duction of an intermediate collection.

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 9

5.3. Defining New Methods
The application of the extension operator expresses that the
class contains new functions and axioms. Every function
given on the algebraic specification will be translated into a
new feature on the Eiffel class. This translation will have to
take into account that Eiffel has four categories of features:
variables, constants, procedures and functions

From the design class diagram, a mapping to the basic attrib-
ute definitions and method signatures is straightforward. A
collaboration diagram shows the messages that are sent in
response to a method invocation. The sequence of these mes-
sages is translated to a series of statements in the method
implementation.

The "create" method is often excluded from the class dia-
gram because of multiple implementations, depending on the
target language. In this phase it is possible to construct an
implementation for it.

A key characteristic in Eiffel is the possibility to express
formal properties of a class writing assertions (preconditions,
postconditions and invariants) Axioms in a formal specifica-
tion language represent the constraints that the class intro-
duces on the operations. Analysing these axioms we can de-
rive the assertions that will be included in the Eiffel classes.
Preconditions and axioms of a function written in GSBL+ are
used to generate preconditions and postconditions for rou-
tines and invariant for Eiffel classes.

The programmer intervenes in the implementation of meth-
ods when it is not possible to construct them automatically.

6. Advantages of the Method
The objective of our approach is to complement the UML
diagrams with a compatible, software-platform- independent
specification and a rigorous method that enables mapping
into efficient code.

There are many benefits to formally specify UML diagrams:

• It allows identifying ambiguous and inconsistent struc-
ture in the UML diagrams.

• Powerful analysis and validation techniques can be ap-
plied.

• Identification and retrieval of components can be par-
tially automated.

There is, however, a wide gap between formal specifications
and object oriented code. To help bridge this gap, we pro-
pose a rigorous method based on the SRI model. To be use-
ful, an approach should allow for smooth incorporation of
executable code, so that tools can map actions and operations
into code efficiently.

We can summarise several advantages of our method:

• Our formal approach allows to derive knowledge from
specifications in order to support assessment of solutions
and to formally verify implementations against specifi-
cations.

• Most of the transformations can be undone which pro-
vides great flexibility in program development.

• The transitions between the UML diagrams and all in-
termediate specifications of the program are done exclu-
sively by applying transformation operators, the correct-
ness of which is proved with respect to the semantics of
the specification language.

• Formal specification, resulting code and all transitions
relating the one to the other provide a good documenta-
tion.

• It allows real design maintenance. Software developers
perform maintenance and evolution on the specification
of the system, not on implementations. Modifications at
algebraic specification levels must be applied again to
produce a new efficient implementation.

There are a couple of tools in the marketplace, which per-
form the mapping to code. Our contribution is more towards
an embedding of the code generation within a rigorous proc-
ess that facilitates reuse.

Our approach provides a basis for automatic reuse, automatic
optimisations and reverse engineering.

7. Related Work
Hennicker and Wirsing [8] introduce a model for the defini-
tion of reusable components. They define a reusable compo-
nent as a tree of algebraic specifications with behavioural
semantics. The realisation level sub-components of the SRI
model may be associated to the model described above.

A classical reference in this subject is the Larch family of
specification languages [7]. A Larch specification has com-
ponents written in two languages: one that is designed for a
specific programming language and another that is independ-
ent of any programming language. The former kind is Larch
interface languages and the latter is the Larch Shared Lan-
guage (LSL).

Larch/Smalltalk was the first Larch interface specification
language with subtyping and specification inheritance [3].
Other Larch interface languages with similar characteristics
are Larch/Modula3 and Larch/C++. Larch/Smalltalk is nota-
ble for a clear separation of types from classes. The most
interesting feature of Larch/C++ is that a class specification
can have multiple interfaces. Object oriented extensions have
been proposed for several specification languages (Z, VDM,
etc.) [19]. There is a wide range of research that proves that
software reusability can be addressed from structured alge-
braic descriptions [6, 10, 11, 18]. France formalises the FU-
SION object oriented analysis modelling techniques [5].
Most works focus on the integration between object oriented
modelling techniques and formal specifications [13,14].

The language TROLL [9] was designed for use in the con-
ceptual modelling or requirement specifications phase in the
development of information systems. OASIS is a class defi-
nition language to model information systems [15].

From UML Diagrams to Object oriented Code10

8. Conclusions
In previous work, the SRI model for the definition of the
structure of reusable components and a rigorous method,
based on the model, for the semi-automatic generation of
efficient object oriented code have been introduced.

To demonstrate the feasibility of our approach a prototype
was implemented. Results of experiments with the prototype
TAROOL reveal advantages of the reusability method as well
as limitations. The object oriented paradigm offers great po-
tential for productivity improvements but it creates unfamil-
iar problems for maintainers. The various uses of inheritance,
binding dynamics and polymorphism can make the depend-
encies between classes harder to find and analyse. Real de-
sign maintenance requires automation, which depends on
formalisation.

The application of building operators to SRI subcomponents
and recording of the “design history” permits good mainte-
nance. Code is generated in its purest form, omitting such
mechanisms as method redefinition, direct repeated inheri-
tance, etc. In this paper, a method for object oriented reus-
ability that bridges the gap between UML diagrams and ob-
ject oriented code was presented. From the proposed method
it can be shown that it is possible to integrate UML static
diagrams with SRI reusable components.

The definition of the reusable component RELATION en-
ables to express relations (associations, aggregations, and
compositions) as semantic constructions and at the same time
to guide in the election of efficient implementations for
themselves.

The extension of the SRI model with an OCL view for the
identification level (incomplete specifications) and the defi-
nition of formal relations from specifications in OCL allow
the identification of SRI components from UML diagrams.
Considering that the SRI components of general use extend
the repertory of OCL types, and that these are associated to
the identification level, the SRI model allows a smooth tran-
sition to efficient programs.

The SRI model allows the generation of a system with a dif-
ferent structure from the UML models. The system specifi-
cation can be mapped into different implementations at sig-
nificantly reduced costs.

References
1. Clérici,S. Un lenguaje para el diseño y validación de es-

pecificaciones algwebriacas. PhD. thesis LSI Depart-
ment. Universidad Politécnica de Catalunya.
España.1989.

2. Clérici,S.; Orejas, F. "The Specification Language GSBL"
Recent Trends in Data Type Specification 1990; April
:17-20.

3. Cheon,Y, Leavens,G. "The Larch/Smalltalk Interface
Specification Language." ACM Trans. on Soft. Eng. and
Meth. 1994;Vol 3, 3: 221-253.

4. Favre,L, Diez, G. "Object oriented software reusability
through formal specifications". In: Nigel Horspool(ed)
System Implementation 2000. IFIP. Chapman Hall, 1998.
pp 235-248.

5. France, R, Bruel, J, Larrondo-Petrie, M. "An integrated
Object oriented and Formal Modeling Environment" .
Journal of Object Oriented Programming (JOOP) 1997;
November-December : 25-34..

6. Guerreri, E. (ed).; Second International Workshop on
Software Reusability; 1993 Italy.

7. Guttag, J, Horning, J. "Larch: Languages and Tools for
Formal Specification". Springer-Verlag.1993.

8. Hennicker, R., Wirsing, M.. "A Formal Method for the
Systematic Reuse of Specification Components"
Springer-Verlag, 1986. (Lecture Notes in Computer Sci-
ence N° 544).

9. Junclauss, R, Saake, G, Hartmann, T, Sernadas, C.
"TROLL-A Language for Object oriented Specification
of Information Systems" ACM Transactions on Informa-
tion Systems 1996; Vol.14, 2:175-211

10. Krueger, C. "Software Reuse" ACM Computing Surveys
1992; Vol. 24, 2:131-183.

11. Liskov, B, Wing, J. "A Behavioral Notion of Subtyping;"
ACM Trans. on Programming Languages and Systems
1994; Vol 16, 6

12. Meyer, B. "Object Oriented Software Construction"
Prentice Hall Object oriented Series, 1997.

13. Moreira, A, Clark, R.. "Combining Object Oriented
Analysis and Formal Description Techniques In: 8th.
European Conference on Object Oriented Programming,
Heidelberg, Springer-Verlag, 1994. (Lecture Notes in
Computer Science N°821).

14. Overgaard, G. "A Formal Approach to Relationships in
the UML" In: Workshop on Precise Semantic of Model-
ing Notations, International Conference on Software En-
gineering. ICSE'98, Japan, April 1998.

15. Pastor, O., Ramos, I. "OASIS 2.2: A Class Definition
Language to Model Information System Using an Object
Oriented Approach" SPUPV-95.788. 1995 Universitad
Politécnica de Valencia.

16 Rational Software Corporation. "Object Constraint Lan-
guage Specification Version 1.1" 1997.
(www.rational.com/uml)

17 Rational software Corporation. "UML Semantics. version
1.1". 1997 (www.rational.com/uml)

18. Schafer, W., Prieto-Díaz, R, Matsumoto, M.(ed) Soft-
ware Reusability Ellis Horwood. 1994.

19. Wirsing, M. "Algebraic Specification Languages: An
Overview. In Astesiano, E, Reggio,G, Tarlecki,A. (ed)
Recent Trends in Data Type Specifications, Springer-
Verlag. 1995, pp 351-367.

