
Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 59

A Shared Object Environment for Developing Distributed
Applications

 Zair Abdelouahab Francisco José da Silva e Silva
Department of Electrical Engineering, Department of Electrical Engineering

Federal University of Maranhão Federal University of Maranhão
São Luís 65080-040, Brazil São Luís 65080-040, Brazil

zair@dee.ufma.br fssilva@ufma.br

Mohamed Mohsen Gammoudi
Department of Computer Scince,
University of Science of Tunis

Tunis, Tunisia
Mohamed.Gammoudi@fst.rnu.tn

Abstract
This paper presents an environment support for
developing distributed applications (ESDDA) in the
form of a library. It supports programming through
shared objects. The environment provides a collection
of predefined classes through which users can
instantiate objects that can be accessed from any
machine transparently in a distributed network
environment. The classes refer to common data
structures such as queues, stacks and bags. They
provide an interface for creating, using and
manipulating object instances. ESDDA offers as well a
mechanism in which programmer can create objects
(not shared) that can be accessed from remote clients.

1. Introduction
The development of cheap processors, workstations, personal
microcomputers, powerful and fast networks led to change
from centralised model of computing to the distributed one.1

The programming model evolved as well in that applications
are written in the form of separate client/server components.

The object oriented technology has been pointed to be a
promising one to control the complexity generated by
distributed systems. The concepts of object orientation such
as modularity, access to data through the interface makes the
use of objects appropriate to model distributed systems. This

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the CSIT copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the
Institute for Contemporary Education JMSUICE. To copy otherwise, or to
republish, requires a fee and/or special permission from the JMSUICE.

Proceedings of the Workshop on Computer Science and
Information Technologies CSIT’99
Moscow, Russia, 1999

approach has been enforced and well accepted with the
development of several distributed environments that use the
concept of objects (e.g. CORBA of OMG[14] and OLE of
Microsoft. Another aspect that should be taken into
consideration is that object oriented applications are
programmed in terms of communicating objects which is a
natural form to program distributed systems [11,13].

The objective of this paper is to present a programming
environment based on shared objects to facilitate
programming distributed applications. This work is
organised as follows. Section 2 describes existing
distributed programming environments, in particular
environments based on objects and SVM (Shared Virtual
Memory). Section 3 presents the model of computation of
ESDDA environment. Section 4 describes the
implementation of ESDDA. Finally, section 5 presents some
remarks and conclusions found during the development of
this work.

2. Background

2.1 Emerald
Emerald is a language developed for supporting distributed
applications, based on the object oriented paradigm. The
language has been implemented on various platforms and in
particular, on a network of distributed workstations. An
application in Emerald is composed as a collection of
cooperating objects which could exist on nodes of the
network. The primary characteristics of Emerald are:
• Localisation of objects is transparent during a remote

invocation. The caller object and the callee object may
move nodes during the call.

• Emerald is a strongly typed language.
• Support of migration of objects
• Transparent replication of immutable objects

A Shared Object Environment for Developing Distributed Applications60

An object in Emerald has a localisation which specifies the
node it which it resides actually. It is the role of the run time
system to determine that localisation during the call (remote
invocation) and perform the operation. However, an
application may decide according to its necessity which
configuration of objects is best on the network with respect
to: proximity to resources, load balancing, interaction
between specific objects ..etc. For this purpose Emerald
offers the following primitives that are related to localisation
of objects:
• Locate: to determine where an object resides
• Fix: to maintain an object on a node
• Unfix: to free and object in order to migrate to other

nodes
• Move: to move an object to other specified nodes.

2.2. Distributed Cm
Distributed Cm [7] extends the sequential Cm [16] with
mechanisms to allow distributed computing such as creation
of distributed objects, transparent communication between
objects, exception handling, communication ports and
concurrency inside objects. A remote object is defined as an
object that has its own context of execution, separate from
the one of its creator, and from those of its clients. A remote
object may execute on any node of the machine and may be
different from the node of its creator. A remote object is
invoked in the same form as other objects. When created, its
information are kept with its creator. A remote object can be
shared by other objects when it is known to them. One way
of making it known to others is that at creation, a symbolic
name is associated to the object and registered with the
server of names of the ESDDA environment. Clients may
access the symbolic name to access the remote reference.

Distributed Cm permits another model of communication
using ports. It provides a predefined class of ports
implemented within the run time system. In order to achieve
communication between objects, ports are associated to them
and should be connected.

2.3. SVM Shared Virtual Memory
SVM systems are introduced by Kai Li [8] and extend the
concept of virtual memory found in operating systems to
systems that have distributed memories. SVM systems use
similar techniques but with a difference in that the whole
addressing space is virtual and paginations occur between a
processor and disc and between processors. Thus, the
memory of each node is used to store the pages that can be
used by the local processor and is seen as a big local cache.
SVM systems use a write coherence protocol to a memory to
make sure that the value returned by a read operation is the
last value of a write operation. There may be various copies
of a page for reading but only one for read and write. When
a process attempts to write a page on a node which does not
have the copy of read-write, a fault page occurs and the
process is suspended. The fault page is handled by a routine
which informs all nodes to invalidate their copies and bring
the read-write to the local node. Nevertheless, this

mechanism has similar semantics of conventional virtual
memory systems, SVM systems may be inefficient. For
example, two nodes that wish to write continually the same
page, the phenomena of thrashing may occur []. To resolve
this problem, Munin system [3] permits to the programmer to
specify different mechanisms of coherence to the stored data.

2.4 Linda
Linda[10,1] is a DSM system in which its computational
model is based on a shared space called Tuple Space TS). A
process wishing to communicate with another process
creates an entity called a tuple, then deposited in the tuple
space. The receptionist process should remove or copy the
tuple within the tuple space. The tuple space is logically
shared between all processes and is implemented as
distributed components between processors.

The tuple space consists of a collection of tuples of passive
data and tuples of active processes. Tuples of data are
registered and identified with a name associated to them.
Tuples of processes are routines which execute and when
they terminate they become data tuples. Linda offers three
basic primitives to manipulate the data tuples: in, out, rd.
Out deposits one tuple inside the tuple space; in removes one
tuple from the tuple space whereas rd copies a tuple from TS.
A process which executes in or rd blocks if there is no tuple
in TS corresponding to the requested one. There exist a non
blocking operations of in and rd that are inp and rdp
respectively. These operations returns values that are true if
there are compatible tuples and values of false otherwise. If
returned values are true, then the effect of inp and rdp are the
same as in and rd respectively. Linda permits as well a
creation of processes inside the tuple space. These processes
execute in an independent form of their creators. When the
active tuples terminate execution, they become data tuples.

In Linda, there is no mechanism for changing a tuple in the
tuple space. A tuple has to be removed from TS by a
process, update it, then put back inside TS. This mechanism
avoids the coherence problems found in SVM but contention
may be generated in case several processes try to update the
same tuple.

The primary problem of Linda is the difficulty in
implementing the tuple space in an efficient manner. This is
because processes do not know where to search for a tuple
which is needed. Several implementation strategies have
been attempted and some specific ones are successful.
However, in several situations, Linda demonstrated a poor
performance. Linda suffers as well from the fact that it has
an unpredictable semantic of performance. Finally, the tuple
space is inflexible since the construction of complex data
structures is difficult.

2.5. Shared Objects
In Shared Objects (SO), processes communicate through
abstract data types called objects. Programs are written in a
sequential language like C and linked to a library of
predefined abstract data types such as tree, queue, stack,

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 61

grid, list and bag. These abstract data types are instantiated
and manipulated at run time through an interface which they
provide.

SO provides a single and common address space which is
shared by all processes in the system. At each address, an
object can be created. Objects are instantiated and destroyed
using primitives of Create and Destroy, respectively. To
instantiate an object, a programmer should supply its type
(which data structure to be used) and the address within the
common address space. For example, an object of type queue
is to be created at address 102 in the common address space.
Each process can create any object at the addresses of the
common space. Once an object is created, it can be accessed
any process to modify it or destroy it.

Processes interact with objects through message passing.
Each object has an interface in which processes may invoke
its methods. For example, an object of type queue has
methods for inserting and removing elements, whereas an
object of type stack provides methods for pushing and
popping elements.

SO provides some meta functions. Meta functions are
operations that exist independently of the interface of a
particular object. They are used for creating, destroying and
controlling objects. The function Create is used to instantiate
an object at a given address; destroy removes an object
residing at a given address; AddressWait allows waiting until
a specified address is allocated or liberated; EventWait
allows a process to block until an event occurs.

The use of operations for removing elements in the blocking
form are util. However, these operations do not resolve the
case where a process wants to read in a blocking form from
several objects. For this purpose, SO provides operations for
reading with events where processes may wait in the future.
With this mechanism, a process may emit various operations
of reading from different objects associated to the same
event.

3. Computational Model

3.1. Introduction
The ESDDA environment presents to its users two functions
that give support to the development of distributed
applications.

The environment provides a collection of classes through
which users can instantiate objects that can be accessed by
any node present in the machine in a transparent form, giving
illusion that the objects reside locally. These classes refer to
data structures that are common in programming such as
queues, stacks, and bags. Objects of these classes are shared
between distributed components of the application.

The second function refers to method calls of a remote object
by providing transparency of localisation. The environment
offers a mechanism through which users can create objects
that can be accessed by remote clients. With this

mechanism, an object server can be created through the
provided library which controls the communication between
the client and the object that contains the method to be
invoked. On the other side, if a user wants to achieve an
invocation of a method that belongs to remote object, he
should first instantiate an object of type proxy from the
library, which will represent the remote object. A request for
executing a method is made to the proxy object which
communicates with the server object resident in the remote
machine.
 The Library of ESDDA

 Classes of shared objects classes of remote objects
 (queue, bag, list and tree)

 Program with Objects in machine A Program with objects in machine B

 Instantiation

 Communication between remote objects

Figure 1 : Computational Model

Figure 1 presents a general view of the computational model.
The environment offers a library containing a set of classes
through which users may instantiate objects within their
programs. Some of the classes are related to the first
function of the system (i.e. classes of data structures). Other
classes refer to access to remote objects with the client/server
model.

3.2 Basic Components of ESDDA
Figure 2 describes the principal components of the
environment and their interactions.

The library consists of a set of pre-defined classes in C++,
through which users can instantiate objects that represent
common data structures such as queue, priority queue, list,
stack, tree and bags. Objects that are created from these
classes are called shared objects (so) and can be accessed
transparently by any process from any machine.

Other component illustrated in figure 2 are part of the RUN
Time System (RTS). Each machine that uses the
environment runs a kernel. The kernel is responsible for
storing the data and controlling accesses to shared objects
created locally. In addition the kernel is responsible for
handling waiting for events which will be discussed in future
sections. The other component of figure 1 is the Global
References Repository. The repository is responsible for
maintaining a data base containing information such as type,
subtype, and localisation of every object defined in the

A Shared Object Environment for Developing Distributed Applications62

environment. The types indicates if the object is shared or
remote. subtype is used for shared objects to indicate their
types such as queue, stack, and list.

 Global Repository of
 Object References

 Machine C

 Kernel Kernel

 Library of Objects Library of Objects

 User User
Programs Programs

 Machine A Machine B

Figure 2 : Componentes do Ambiente

The most important component is the library. The library is
defined in C++ and its diagram is illustrated in figure 3 using
the notation of Booch [5].

The class SharedObjectsClass (of shared objects) is an
abstract class and contains all data and methods which are
common to every type of shared objects (e.g. queue, list, bag,
and stack). In particular, it contains the name of the shared
object, the maximum number of elements which can be
stored and the maximum length of its elements. This class
contains as well methods for creating and destroying objects.
We can notice from the diagram that every type of shared
objects inherits components of the class SharedObjectsClass.
The types of objects that are supported by the environment
are initially: queue, stack, binary tree and bags. We can
remark that some classes are specialisation of other classes.
This is the case of priority queue which is a subclass of the
class queue. From this initial diagram, it can be extended to
support other new data structures that can be shared (e.g. n-
ary trees, grids).

Another class of the diagram that manipulates shared objects
is the class EventClass. In some cases, a user process may
need to wait for an element to be inserted in one object
belonging to a group. For example, a user program may
need to wait at the same time for an element to be inserted in
a queue or in a stack. This environment provides a definition
of event to achieve that purpose in the class EventClass.

Programming with Shared Objects

Programming with shared object in the proposed
environment is very simple. The first step consists of
instantiating objects. To create a new object, the user needs
to instantiate it from one class related to the library of data
structures (e.g. queue, stack, list, bag). The user is required
to supply the global name of the object, the maximum
elements of that particular objects.

 EventClass SharedObjectClass ListClass

 BagClass

 QueueClass TreeClass StackClass

 Balanced
 Priority Binary BagClass
 QueueClass TreeClass

 ProxyClass ServerClass

Figure 3 : Class Diagram of ESDDA

The following code shows the syntax for creating a shared
object:

QueueClass my_queue (“shared_queue”, 1000, 1000);

my_queue.CreateSharedObject ();

The code above instantiate an object of type Queue called
shared_queue. This queue has a global name
“shared_queue” which can be used by other processes to
access the object. The code states that the object
shared_queue may have a maximum of 1000 elements and
these elements may have a maximum of 1000 bytes.

Once the shared object is created, it can be accessed
transparently by other objects or processes transparently by
knowing just its global name. To allow programs or
processes to access a shared object, the user has to instantiate
a local object from the same class (i.e. QueueClass) and
associate it with the global name of the shared object. Any
reference to the local name is an access to the shared object.
Note that the user do not need to supply parameters such as
the maximum number of elements and the maximum number
of bytes. The fragment of code for achieving this is shown
below:

Code = QueueClass my_queue (“shared_queue”);

When the above code is executed, the following values may
be returned:

0 1 indicates that the operation is complete with success
1 -1 indicates that the object “shared_queue” does not

exist
2 -2 indicates that the object called “shared_queue” exists

but of type different from queue.

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 63

If the return code of the above function is –1, thus the object
is not created yet. The user can wait until the object
shared_queue is created. The environment provides a
function waitexist for this purpose which is part of the
abstract class SharedObjectsClass.

my_queue.waitexist();

The environment blocks the process executing the above
function until the global object is created by another process
or object.

Manipulating Shared Objects
For each type of shared objects, the environment provides
methods through which these are manipulated. For example,
the environment offers methods for inserting and removing
elements to/from an object queue and methods for pushing
and popping elements to/from an object stack.

Removing elements from shared object can be done in a
blocking or non-blocking form. With the non blocking form,
if a shared object is empty (no elements), a code (integer
value) is returned to the user process indicating to him that
there are no elements and the process execution can continue
immediately. In case of a blocking removal from an empty
shared object, it causes that particular process to block until
another process inserts an element.

Another aspect related to the manipulation of objects is that
the environment does not control the type of elements
inserted/removed. Each element inserted/removed is just a
collection of bytes. It is the responsibility of the programmer
to do the appropriate casting at the time of insertion and
removal. At insertion time, the programmer should supply a
pointer to the element and it length in bytes.

Let us illustrate how to manipulate an object of type queue:

my_queue.insert(ptr_data, length);

This code causes an insertion of an element whose pointer is
ptr_data and length length inside the object my_queue (i.e.
shared object shared_queue).

my_queue.remove(ptr_data, &length);

This code causes a non blocking removal of an element
whose pointer is ptr_data and length length from the object
my_queue (i.e. shared object shared_queue).

my_queue.removeB(ptr_data, &length);

This code causes a blocking removal of an element whose
pointer is ptr_data and length length from the object
my_queue (i.e. shared object shared_queue).

Creating Events
Some problems may require the programmer that its
programs necessitate waiting for an element from more than
one shared object. For example, a program may request
elements from more than one queue object at the same time.
The blocking remove operation as provided cannot handle
this situation since the blocking is done only at one queue
object. One solution for the programmer is to employ a busy
waiting with a remove operation from each queue. However,

this solution leads to inefficiency. To resolve this situation,
the environment provides to users events through which it is
possible to wait on various shared objects (e.g. queues).

To use events, users need to manipulate the class EventClass.
In particular, to instantiate an event, a user should supply the
name of the event. Then, users needs to inform the
environment what objects are involved with the event. This
is done through methods supplied within the classes of those
objects. For example, if one of those objects is of type
queue, the member method removeE() of the class
QueueClass should be used. The parameters that should be
supplied as part of the remove operation are: the location
where the element should be copied, the address of the
variable which should hold the length of the element, and the
name of the event associated with the object. Below is
illustrated an example using events:

/* Creation of two objects queues */
QueueClass queue1 (“QueueOne”, 1000, 100);
queue1.CreateSharedObject ();
QueueClass queue2 (“QueueTwo”, 1000, 100);
queue2.CreateSharedObject ();

/* Creation of events */
int length;
EventClass ex_event (“Example_Event”);

/* removing with events */
queue1.removeE (ptr_var, &length, ex_event);
queue2.removeE (ptr_var, &length, ex_event);

Once the event is created and it is associated to a set of
shared objects, the users needs to call the method EventWait
which is a member of the class EventClass. The execution of
this method causes the process to wait until the occurrence of
the event. In the example given above, the event that is
waited for is the removal of an element from QueueOne or
QueueTwo.

/* Waiting for the event */
char *objectname;
ex_event.WaitEvent (&objectname);

The function EventWait returns as a parameter the shared
object from which the element is removed. The environment
returns the element and its length to the locations supplied
within the operation removeE corresponding to that
particular objects.

3.4 About Remote Objects
Programming with remote object requires two steps.
Initially, the programmer needs to handle the form in which
methods of a remote object are offered. The second step is
concerned with the form in which remote objects are invoked
(i.e. invocation of methods of the remote object).

To provide objects that can be accessed remotely by other
distributed objects, the programmer should use the class
ServerClass that is part of the environment. An object of this
class will control the communication between the program

A Shared Object Environment for Developing Distributed Applications64

and its clients that requests remotely the execution of
methods that are member of objects created inside the
program.

Once a remote object is created, it can be accessed by any
clients which knows its global name. To access a remote
object, the program should instantiate a proxy object of this
object. The instantiation is done from a class ProxyClass
offered within the library. The user should supply the global
name of the object to access as part of the instantiation. The
class ProxyClass has a method call() used by the program to
invoke methods of the remote object.

Kernel Kernel

 Client Object Proxy Object Server Object Remote Object

 Network

Figure 4 : Invocation of Remote Objects

The proxy object is responsible for sending requests of
invocation of remote methods to the remote object and
receiving results from the remote object, conform to figure 4.
The details related to programming with remote objects are
omitted in this paper, but can be found in [17,18].

3.5. Comparison with Other Environments
Distributed Cm
The approach taken Distributed Cm is different from the one
taken by our environment in that the first is an extension of a
language whereas ours is a library. Since Distributed Cm is
an extended language, thus it is natural that it provides more
flexible and high level constructs. However, libraries are
more portable. Programming with our environment using
shared objects is simple since it provides nearly the same
semantic of local objects.

ESDDA offers a set of predefined objects that encapsulates
data structures that are shared in a distributed environment.
It has an advantage in that shared objects reside in the kernel
which can manipulate them and execute various procedures
that can optimise the performance when accessing them.
The kernel may migrate objects transparently from one node
to another.

With Emerald
Emerald is a language that is defined from scratch to support
distributed applications. Providing a new language leads to
more flexibility in offering various functions of a system.
However, this option does not take advantage of application
codes already written with popular languages.

Both our environment and Emerald provide transparency in
accessing objects. Moreover, Emerald permits as well
explicit indication of localisation of objects. It provides
primitives for fixing and moving objects. Emerald does not
provide support for predefined objects as is in our case. As
mentioned above in comparing with Distributed Cm, our
environment can implement predefined objects efficiently to
achieve a good performance.

Emerald supports both inter and intra object concurrency. It
uses monitors for achieving synchronisation. Our
environment does not support intra object concurrency.
Emerald has a strong relation between the language,
compiler and the system. A positive aspect is that the full
system is implemented efficiently to support programming
with distributed objects. A negative aspect is its portability
to other architecture.

With SO
The concept of shared object in our work came from SO
[10]. This work is for supporting parallel and distributed
application in general. Some original aspects of SO have
been modified to accommodate our necessities. The main
modification refers to the programming paradigm. SO offers
an interface for programming in the conventional and
procedural paradigm whereas our environment uses the
object orientation. This has lead to the modification of other
components. For example, our system does not provide a
single address space as in SO.

Both environments SO and our provides predefined shared
objects. However, this can limit functions of the system to
program general distributed applications. Our environment
provides another mechanism which is programming with
distributed objects (i.e. remote objects) inspired from [12,
17].

4. Implementation
A prototype environment has been implemented on a
network of distributed workstations, SPARC running UNIX
Solaris of Sun Microsystems. The language has been
implemented with Concert/C [2], a version of C that supports
distributed programming, developed by IBM. Concert/C
provides various mechanisms such as RPC, asynchronous
message passing, process management, and EBF (external
Binding Facilities). Figure 2 illustrates components of the
implemented environment.

4.1. Environment Components
The Global repository of references keeps a database in
which all object references are recorded. For each object, the
database keeps its name, type (which identifies if the object
is shared or remote), subtype (that indicates the data structure
type of a shared object), and a reference (bind) to the kernel
(machine) responsible for that particular object. In addition
to these functions, the repository is also responsible for
controlling object creation events. This is the case where a
process may block until an object is created by another
process. It is the responsibility of the repository to inform

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 65

processes waiting for an object to be created when the latter
is created by another process.

Th kernel is a component which is responsible for storing
data objects and controlling every access to a shared object.
There is one active kernel on every machine of the running
environment. When a user program runs on a machine A
and requests a creation of a shared object, the request is sent
to the local kernel which creates the object and registers it
within the global repository. This makes the created object
accessible to every machine of the environment. Every
request to the shared object (e.g. insertion, and removal) are
handled by the kernel. Another responsibility of the kernel
refers to the blocking remove of elements from shared
objects. When a user process makes a blocking remove
request to an object which is empty, the kernel registers the
request and when another process inserts an element to that
particular object, the kernels wakes up the process and
returns to it the element.

The last component of the environment is the library. The
library is linked to user programs and is responsible for
routing local requests to appropriate components. In case of
shared objects, the requests are directed to kernels that
maintain them. In case of remote objects, the library
communicates to the server objects. When the library
receives results from the server objects, these are directed to
appropriate user programs.

5. Conclusion
The environment has presented to the programmer an object
oriented interface through which distributed applications
may create, use and manipulate objects. The objects are
made available to every process of the same application.
Objects may interact in a distributed environment where
communication and localisation are handled transparently by
the environment, thus makes programming easier. The
environment offers a collection of predefined classes through
which users may instantiate objects which encapsulate
common data structures. These objects are shared and their
use is simple a does not require any special programming
than the one with local objects.

There as certain components of this environment that are
implemented in a centralised fashion, for example, the
repository of objects. A better solution is to employ a
decentralised strategy. Other future improvements of this
environment include the distribution of objects. In this
version, an object reside entirely on one node of the network.
In case several processes want to access this objects, several
requests should be directed to that particular node. This may
generate contention. To avoid this problem, elements of
each object could be distributed around the network.

Acknowledgement
We would like to thanks SUDENE and FAPEMA for their
Financial support.

References
1. G. S. Almasi e A. Gottlieb: Highly Parallel Computing,

The Benjamin/Cummings, 1994.

2. J. S. Auerbach et al: Concert/C Tutorial and User’s
Guide: An Introduction to a Language for Distributed C
Programming, IBM, 1995.

3. J. K. Bennett et al: Munin: Distributed Shared Memory
Based on Type-Specific Memory Coherence,
Proceedings of ACM Conference on Principles and
Practice of Parallel Programming, 1990

4. A. Black et al: Object Structure in the Emerald System,
ACM SIGPLAN OOPSLA’86, 1986

5. Grady Booch: Object Oriented Design with
Applications, The Benjamin/Cummings, 1994

6. G. Coulouris, J. Dollimore e T. Kindberg: Distributed
Systems Concepts and Design, Addison Wesley, 1994

7. Celso Gonçalves Júnior: Objetos Distribuídos, Unicamp
DCC, 1994

8. Kai Li: Shared Virtual Memory on Loosely Coupled
Multiprocessors, Yale University, 1996

9. Jeff Kramer: Distributed Software Engineering, IEEE,
1994

10. D. P. Mallon: A Shared Memory Model for Parallel
Distributed Memory Machines, PhD. Thesis University
of Leeds, 1992

11. M. Mülhäuser, W. Gerteis e L. Heuser: DOCASE: a
Methodic Approach to Distributed Programming,
Communications of the ACM, Sept. 1993.

12. H. Moons e P. Verbaeten: Object Invocation in the
COMET Open Distributed System: the Dialogue Model,
IEEE, 1992

13. J. R. Nicol, C. T. Wilkes e F. A. Manola: Object
Orientation in Heterogeneous Distributed Computing
Systems, IEEE, 1993

14. CORBA: Architecture and Specification, Object
Management Group, 1995

15. R. K. Raj et al: Emerald: A General Purpose
Programming Language, Software - Practice &
Experience, 1991

16. F. Q. B. da Silva, H. K. E. Liesenberg e R. Drummond:
Programação em Cm, Proceedings of XV SEMISH, pp
101-102, Rio de Janeiro, RJ, 1988

17. F. J. Wang, J. L. Chen e C. H. Hu: A Distributed
Object-Oriented System with Multi-threads of Services,
IEEE, 1993

18. Silva, F. J. S.: Ambiente de Apoio ao Desenvolvimento
de Aplicações Distribuídas, Master thesis, UFMA, 1997.

