
11

Towards A Logic For Representation And Retrieval Of
Incomplete Temporal Objects

Ed Porto Bezerra Ulrich Schiel
Department of Computer Science Department of Systems and Computing

Federal University of Paraíba Federal University of Paraíba
João Pessoa, Brazil Campina Grande, Brazil

porto@dsc.ufpb.br ulrich@dsc.ufpb.br

Bernardo Lula Júnior
Department of Systems and Computing

Federal University of Paraíba
Campina Grande, Brazil

lula@dsc.ufpb.br

Abstract
In order to obtain an adequate model of the universe of
discourse of certain information systems, it is of
fundamental importance to allow the description of
both incomplete and temporal characteristics of certain
objects. In particular, in some cases the two types of
characteristics may be treated simultaneously. This
article proposes a logic, based on modal temporal logic,
for the description and retrieval of incomplete temporal
objects. Experiments has been done with a prototype,
called MITO (Manipulation of Incomplete Temporal
Objects) which has given significant elements for the
construction of the theory.

1. Introduction
The growing importance of the use of computers in modern
life becomes more and more evident. In this process, an
adequate modelling of the objects in an information system,
is fundamental. In order to give support for the information
needs, in some cases the system must be able to keep the
history of its objects and, both the history as the attributes of
the objects may contain imprecise data. These objects must
be created, updated adequately, and queries must return the
best answer possible.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the CSIT copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Institute for Contemporary Education JMSUICE. To copy otherwise, or to
republish, requires a fee and/or special permission from the JMSUICE.

Proceedings of the Workshop on Computer Science and
Information Technologies CSIT’99
Moscow, Russia, 1999

Research on temporal databases has gained a certain maturity
[4,6,8,26,27]. Incomplete information has also a long history,
but continues as subject of several research directions
[1,7,17,19,28]. The youngest theme is temporal
indeterminacy [7,11,13,25]. As our knowledge, there are no
work combining non-temporal and temporal indeterminacy in
an unified approach.

Also temporal extensions to database languages have been
defined as, for instance, TQUEL [24], SQL/Temporal [18],
and TSQL2 [25]. The last language supports also some kinds
of temporal incompleteness. Actual database languages are
not able to deal with incomplete information but, some
suggestions are coming up as, e.g. extensions to SQL [7,13].

We can distinguish three kinds of imperfect information,
according to the survey of [21]. Incomplete information
means the absence of some value, given by a ‘null value’.
This can mean that the value exists but is unknown or that the
value is non-existent. For instance, a null value at the ‘has-
phone’ attribute can signify that the object has an unknown
phone number or it has no telephone. Imprecise information
occurs when we have some information, but it is not precise.
Imprecision can be interval valued (age between 20 and 25,
salary less than 1000, name is ‘Smith’ or ‘Schmidt’) or fuzzy
valued (age is ‘young’). Finally, uncertain information
associates an estimation of validity to the values. This
estimation may be probabilistic or possibilistic.

According to the classification above, in this paper we treat
incomplete information, and interval or set-valued imprecise
information. We assume that these imperfections can occur at
the attributes of an object and at the temporal information
attached to each object.

Classical database systems are based on the so called Closed
World Assumption (CWA), where all facts not stored in, or
not deductible from the database are false. In contrast, in the

Towards A Logic For Representation And Retrieval Of Incomplete Temporal Objects12

Open World Assumption (OWA) a fact is false only if its
negation is deductible from the database. All other not true
facts are assumed ‘unknown’ [14]. For systems dealing with
imperfect information the CWA is not suitable, since the
frontier between ‘true’ and ‘false’ facts is inexact. For this
reason, false facts must explicitly be stored in the database,
and we call them negative information. According to
Levesque [15] in order to treat incomplete information
effectively it must be possible to define exactly what is
known (precisely or not), what is not known, and what is
false.

As a first step for the validation of our ideas, a prototype has
been implemented in LPA-Prolog for Windows [16], called
MITO (Manipulation of Incomplete Temporal Information)
[2]. Therefore, the rules governing the prototype are more
based on intuition as on a formal system.

In this paper we work out an extended first-order logic which
gives a sound foundation for systems dealing with incomplete
temporal information.

In order to attend the requirements of the OWA and of
temporal databases, the theory developed is a temporal modal
logic [9,12] with special operators K (known) and M
(maybe). All facts stored in the system are interpreted as
known (K) [15] and possible worlds obtained by disjunctive
information are classified as maybe (M) [10]. The specific
temporal operators are after, before, during, begin, end and
never.

The following section introduces the example used in this
article, first in a database form and then in form of logical
clauses. The example is used to introduce the several forms
of imprecise information considered. In Section 3 we define
the alphabet and axiomatics of our logic, including general
axioms specific for query processing. The correct
interpretation of imprecise temporal intervals associated to
objects, is the matter of Section 4, and queries are discussed
in Section 5. Section 6 concludes the paper.

2. Incomplete Temporal Objects in MITO
An object is something which makes sense in the context of
an application and is distinguishable from other objects [22].
In MITO, objects are associated with an identification and a
set of attributes. Since the database is temporal, the
identification is a pair (id, t), where id is a unique code in the
systems and t is the instant when the object has been created.
Therefore the history of an object may be retrieved using the
id. An update of some attribute generates a new entry in the
database with the id of the updated object, composed with a
new t. Each temporal object has a special attribute called
time which contains a time interval determining the validity
of the actual state or the object. We do not consider in this
paper complex objects, where attribute values may contain
other object Ids or complex values, such as sets, tuples, etc.

The following example lists four instances of a class of
employment relating employees to companies with a

corresponding salary. Each object has an identification and a
list of attributes, including the time attribute. In our example
we do not take into account the decomposition of the
identification.

With the values of the example we define our three kinds of
imprecision of the data part of the object and also at the
temporal part.

employment(O1):
employee = antônio or joão
company = UFRN or UFPB
salary = 1400
time = [1994, *]

employment(O3):
employee = joão
company = UFPB
salary = <1500
time = [1994, now]

employment(O2):
employee = not(joão)
company = UFPE
salary = in(2000,3000)
time = [before(1983), now]

employment(O4):
employee = *
company = UFBA
salary = none
time = [1970, 1990]

UNKNOWN VALUE: if the value of an attribute is unknown
(null value of [5]), it is represented by an asterisk ‘*’. The
case when an attribute is no existent, it contains the special
value ‘none’. For instance, employment(O4) states that there
is an employee working at UFBA without salary, between
1970 and 1990, but we do not know who it is.

IMPRECISE VALUE: imprecision can be given by
disjunctive values (object O1), intervals (salary of object O2)
or semi-open domains (salary of O3).

NEGATIVE INFORMATION: negation is necessary for the
explicit declaration of false facts. Therefore,
employment(O2) states that there is an employee of UFPE,
but not ‘João’.

In the temporal part the endpoints of the interval may be
unknown (as the asterisk of object O1), determined by semi-
open time intervals before(t) and after(t), or by a closed
interval during(I), where t is a time instant and I is a time
interval.

The example database above must be converted in a clausal
form in order to satisfy the notation of the predicates of the
language to be defined in the next section.

employment(O1) ∧
employee(O1, or(antônio, joao)) ∧
company (O1,or(UFRN, UFPB) ∧
salary (O1, 1400) ∧
time(O1, [1994, *]) ∧

employment(O3) ∧
employee (O3, joao) ∧
company(O3, UFPB) ∧
salary(O3, lt 1500) ∧
time(O3, [1994, now]) ∧

employment(O2) ∧
employee (O2, not(joao)) ∧
company (O2,UFPE) ∧
salary (O2, in(2000, 3000)) ∧
time(O2, [before(1983), now]) ∧

employment(O4) ∧
employee (O4, *) ∧
company (O4, UFBA) ∧
salary(O4, none) ∧
time(O4, [1970, 1990])

Note that the object identifier makes the connection between
the several predicates concerning properties of the same
object. The name of the unary predicate is called the name of
the object. In the following table we explain the meaning of
the temporal operators used to model imprecise endpoints of

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 13

the time predicate. We distinct between time intervals I and
time instants t which are intervals at the lowest granularity.

Operator Meaning
Before(t) the instant occurs sometime before t
After(t) the instant occurs sometime after t
During(I) the instant occurs sometime during I

3. LITO - A Logic for Incomplete Temporal
Objects
We introduce now an extended first-order logic <L, A, R>
for dealing with incomplete temporal objects, where L is the
description of database language, A is the set of axioms
which characterises the operators of L, and R is the set of
rules to be used for the derivation of new facts (modus
ponens) and processing of non-temporal and temporal
queries.

3.1 Alphabet
logic symbols:

a) punctuation: (,), [,]
b) connectives: ¬, ∨
c) quantifier: ∀
d) modal operators: M, K
e) temporal operators: never, before, after, during,
begin, end
f) non-temporal operators: not, or, lt
g) variables:

non-temporal: x, x1, x2,…
temporal instant: t, t1, t2,…
temporal interval: I, I1, I2,…

Non-logic symbols:
a) constants:

temporal: *, ∞, now
non-temporal: * and all character strings

b) predicative symbols: P, P1, P2,..., Time, < and =

3.2 Terms
We distinguish between non-temporal terms, temporal instant
terms, and temporal interval terms.

Non-temporal terms:
a) non-temporal constants are non-temporal terms;
b) each non-temporal variable is a non-temporal term
c) if Tx, Tx1 e Tx2 are non-temporal terms then

or(Tx1, Tx2), not(Tx) and lt Tx are non-temporal
terms

Temporal instant terms:
a) temporal constants are temporal instant terms
b) each temporal instant variable is a temporal instant

term

c) if Tt is a temporal instant term, then before(Tt) and
after(Tt) are temporal instant terms

d) if TI is a temporal interval term, then during(TI) is
a temporal instant term

e) if TI is a temporal interval term, then begin(TI) and
end(TI) are temporal instant terms

Temporal interval terms:
a) each temporal interval variable is a temporal

interval term
b) if Tt1 and Tt2 are temporal instant terms, then [Tt1,

Tt2] is a temporal interval term
c) if TI is a temporal instant term, then never(TI) is a

temporal interval term
d) if Tt is a temporal instant term, then [∞, Tt] e [Tt,

∞] are temporal interval terms.

3.3 Formulas
A well formed formula (wff) is an expression defined
recursively as:

a) if x is a non-temporal constant, Tx, Tx1 and Tx2 are
non-temporal terms and TI is a temporal interval term,
then Tx1 = Tx2, Tx1 < Tx2, P(x), P(x, Tx) and
Time(x, TI) are wffs;

b) if F and G are wffs, then ¬F, F ∨ G, MF and KF are
wffs;

c) if F is a wff and v is a variable, then ∀v (F) is a wff;
d) if Tt1 are Tt2 are temporal instant terms, then Tt1 = Tt2

is a wff;
e) if t1 are t2 are temporal instant variables, then t1 < t2 is a

wff;
f) if TI1 and TI2 are temporal interval terms then TI1 = TI2

is a wff.

3.4 Definitions
If F and G are wffs, we define the following new symbols:
1) ∃x (F) ⇔def ¬∀x (¬F)
2) F ∧ G ⇔def ¬ (¬F ∨ ¬G)
3) F → G ⇔def ¬F ∨ G
4) F ↔ G ⇔def (F → G) ∧ (G → F)
5) t1 ∈ [t2, t3] ⇔def (t2 < t1 ∨ t1 = t2) ∧ (t1 < t3 ∨ t1 = t3)
6) I1 ⊆ I2 ⇔def (begin(I1) > begin(I2) ∨ begin(I1) =

begin(I2)) ∧ (end(I1) < end(I2) ∨ end(I1) = end(I2))
7) t2 = succ t1 ⇔def (t1 < t2 ∧ ∀t3 (t1 < t3 → (t2 < t3) ∨ (t2 =

t3)))
8) t2 = pred t1 ⇔def succ t2 = t1

9) le Tx ⇔def or(lt Tx, Tx)
10) gt Tx ⇔def not(le Tx)
11) ge Tx ⇔def not(lt Tx)
12) in(Tx1, Tx2) ⇔def (ge Tx1 ∧ le Tx2)
13) sometime Time(x, I) ⇔def ∃t(t ∈ I ∧ Time(x, [t, t]))
14) TI = [Tt1, Tt2] ⇔def Tt1 = begin(TI) ∧ Tt2 = end(TI)

Towards A Logic For Representation And Retrieval Of Incomplete Temporal Objects14

3.5 Axiomatics
The axioms of the systems are grouped in the following
categories: basic, non-temporal, temporal and imprecise
intervals.

BASIC AXIOMS:

1) All the axioms of first-order logic
2) ∀x (F ∨ G) → MF
3) ∀x (F ∨ G) → MG
4) ∀x KF → F
5) F → MF
6) I1 ⊆ I2 ⇔def ∀t (t ∈ I1 → t ∈ I2)

NON-TEMPORAL AXIOMS:

7) ∀x∀x1∀x2 (P(x, or(x1, x2)) ↔ P(x, x1) ∨ P(x, x2))
8) ∀x∀x1∀x2 (P(x, x1) ∧ P(x, x2) → x1 = x2)
9) ∀x∀x1∀x2 (K((P(x, or(x1, x2)) → MP(x, x1))
10) ∀x∀x1 (KP(x, *) → MP(x, x1) ∧ ∃x2 P(x, x2))
11) ∀x∀x1 (KP(x, lt x1) → ∃x2 (x2 < x1 ∧ P(x, x2)) ∧ ∀x3 (x3

< x1 → MP(x, x3))
12) ∀x∀x1 (KP(x, not(x1)) → ¬P(x, x1) ∧ KP(x, *))
13) ∀x (KP(x, not(*)) → ¬∃x1 P(x, x1))

TEMPORAL AXIOMS:

14) ∀x∀t1∀t2 (Time(x, [t1, t2]) → (t1 < t2) ∨ (t1 = t2))
15) ∀x∀I (Time(x, I) ↔ ∀t (t ∈ I → Time(x, [t, t])))
16) ∀x∀I (Time(x, never(I)) ↔ ∀t (t ∈ I → ¬Time(x, [t,

t])))
17) ∀x∀t1 (Time(x, [∞, t1]) ↔ ∀t2(t2 < t1 ∨ t1 = t2 →

Time(x, [t2, t2])))
18) ∀x∀t1 (Time(x, [t1, ∞]) ↔ ∀t2(t1 < t2 ∨ t1 = t2 →

Time(x, [t2, t2])))
19) ∀x∀t2 (KTime(x, [*, t2]) → ∃t1(Time(x, [t1, t2]) ∧

¬KTime(x, [t1, t2])))
20) ∀x∀t1 (KTime(x, [t1, *]) → ∃t2(Time(x, [t1, t2]) ∧

¬KTime(x, [t1, t2])))

IMPRECISE INTERVALS:

21) ∀x∀I∀t (Time(x, [during(I), t1]) → ∃t (t ∈ I ∧ Time(x,
[t, t1]))

22) ∀x∀t1∀I (Time(x, [t1, during(I)]) → ∃t (t ∈ I ∧ Time(x,
[t1, t]))

23) ∀x ∀t∀t1 (Time(x, [before(t), t1]) → ∃t2 (t2 < t ∧
Time(x, [t2, t1])))

24) ∀x ∀t1∀t (Time(x, [t1, before(t)]) → ∃t2 (t2 < t ∧
Time(x, [t1, t2])))

25) ∀x ∀t∀t1 (Time(x, [after(t), t1]) → ∃t2 (t < t2 ∧ Time(x,
[t2, t1])))

26) ∀x ∀t1∀t (Time(x, [t1, after(t)]) → ∃t2 (t < t2 ∧ Time(x,
[t1, t2])))

3.6 Rules
BASIC:

1) |−F and |−F → G then |−G (modus ponens)

QUERIES:

The rules for processing basic queries are given as Horn
clauses or formulas reducible to Horn clauses. When a query
is formulated one variable of the head predicate should be
instantiated and the other is fulfilled by the result of the
application of the rule and it will contain the answer. This
variable can also be considered as a free variable, e.g. [6].

NON-TEMPORAL BASICS:

2) P1(x, x1) ∧ P2(x, x2) ∧ KP1(x, x1) ∧ KP2(x, x2) →P2(x, x2)
3) P1(x, x1) ∧ P2(x, x2) ∧ (∃x3 KP1(x, or(x1, x3)) ∧ KP2(x,

x2) → MP2(x, x2)
4) P1(x, x1) ∧ P2(x, x2) ∧ (∃x3 KP1(x, lt x3) ∧ (x1 < x3)) ∧

KP2(x, x2) → MP2(x, x2)
5) P1(x, x1) ∧ P2(x, x2) ∧ (∃x3 ∃x4 KP1(x, in(x3, x4) ∧ (x3 <

x1 ∨ x3 = x1) ∧ (x1 < x4 ∨ x1 = x4)) ∧ KP2(x, x2) →
MP2(x, x2)

6) P1(x, x1) ∧ P2(x, x2) ∧ KP1(x, *) ∧ KP2(x, x2) → MP2(x,
x2)

7) P1(x, x1) ∧ P2(x, x2) ∧ KP1(x, not(x1) ∧ KP2(x, x2) →
¬P2(x, x2)

TEMPORAL BASICS:

8) Time(x, I) ∧ KTime(x, I) → Time(x, I)
9) P(x, x1) ∧ Time(x, I1) ∧ (∃I2 KP(x, x1) ∧ KTime(x, I2) ∧

I1 ⊆ I2) → P(x, x1)
10) P(x, x1) ∧ Time(x, I1) ∧ (∃t KP(x, x1) ∧ KTime(x,

never([t, t])) ∧ t ∈ I1) → ¬P(x, x1)
11) P(x, x1) ∧ Time(x, I1) ∧ (¬∃I2 KP(x, x1) ∧ KTime(x, I2)

∧ I1 ⊆ I2) ∧ (¬∃t KP(x, x1) ∧ KTime(x, never([t, t]) ∧ t ∈
I1) → MP(x, x1)

12) P(x, x1) ∧ Time(x, never(I1) ∧ (∃I2 KP(x, x1) ∧ KTime(x,
never(I2) ∧ I1 ⊆ I2) → P(x, x1)

13) P(x, x1) ∧ Time(x, never(I1) ∧ (∃t KP(x, x1) ∧ KTime(x,
[t, t]) ∧ t ∈ I1) → ¬P(x, x1)

14) P(x, x1) ∧ (Time(x, never(I1)) ∧ (¬∃I2 KP(x, x1) ∧
KTime(x, never(I2) ∧ I1 ⊆ I2) ∧ (¬∃t KP(x, x1) ∧
KTime(x, [t, t]) ∧ t ∈ I1) → MP(x, x1)

4. Transformation Of Imprecise Temporal
Intervals
Temporal objects must be correctly interpreted, even if the
time interval is imprecise, in order to obtain correct answers
to queries. Based on axioms 21-26 we can transform the
imprecise time of an object defined by the predicate Time(s,
TI) into a conjunction of precise time clauses Time(x, I) or
sometime Time(x, I). The intervals I created must attend
axiom 14. The table below shows the full list of these
transformations. They were originally proposed in [20] and
reformulated in [2,3]. In the appendix we proof one of the
corresponding propositions. It is important to note that the
interpretation for Time(x, TI) is weaker than TI, but adequate
to response queries.

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 15

begin(TI) end(TI) interpretation for Time(x, TI)
t1 T2 Time(x, [t1, t2])
t1 before(t2) Time(x, [t1, t1]) ∧

sometime Time(x, [t1, pred t2])
t1 after(t2) Time(x, [t1, succ t2]) ∧

sometime Time(x, [succ t2, ∞])
T during(I) Time(x, [t, begin(I)]) ∧

sometime Time(x, I)
T * Time(x, [t, t]) ∧

sometime Time(x, [t, ∞])
Before(t1) t2 sometime Time(x, [∞, pred t1]) ∧

Time(x, [pred t1, t2])
Before(t1) before(t2) sometime Time(x, [∞, pred t2])
Before(t1) after(t2) sometime Time(x, [∞, pred t1]) ∧

Time(x, [pred t1, succ t2]) ∧
sometime Time(x, [succ t2, ∞])

Before(t) during(I) sometime Time(x, [∞, pred t]) ∧
Time(x, [t, begin(I)]) ∧
sometime Time(x, I)

Before(t) * sometime Time(x, [∞, ∞])
After(t1) t2 sometime Time(x, [succ t1, t2]) ∧

Time(x, [t2, t2])
After(t1) before(t2) sometime Time(x, [succ t1, pred

t2])
After(t1) after(t2) Sometime Time(x, [succ t1, ∞])
After(t) during(I) Sometime Time(x, [succ t,

end(I)])
After(t1) * Sometime Time(x, [succ t, ∞])
During(I) t Sometime Time(x, I) ∧

Time(x, [end(I), t])
During(I) Before(t) Sometime Time(x, [begin(I),

pred t])
During(I) After(t) Sometime Time(x, I) ∧

Time(x, [end(I), succ t]) ∧
Sometime Time(x, [succ t, ∞])

During(I1) During(I2) sometime Time(x, I1) ∧
Time(x, [end(I1), begin(I2)]) ∧
sometime Time(x, I2)

During(I) * sometime Time(x, [begin(I),
∞])

* T sometime Time(x, [∞, t]) ∧
Time(x, [t, t])

* Before(t) sometime Time(x, [∞, pred t])
* After(t) sometime Time(x, [∞, ∞])
* During(I) sometime Time(x, [∞, end(I)])
* * sometime Time(x, [∞, ∞])
In order to understand the table, suppose the time interval
associated to an object is [during(01/01/1992, 12/31/1992),
after(12/31/1994)], i.e. it started on a day in 1992 and ended
after 1994. Since, a fact associated with the operator
sometime will return a truth-value possible, a query on the
validity of the object will return possible for times in 1992
and after 1994. For times between 1.1.1993 and 1.1.1995

(the successor of 12.31.1994) the answer will be true. In the
appendix we proof this proposition.

5. Querying Incomplete Temporal Objects
MITO allows two types of queries: logical queries and
retrieval queries. In logical queries the user asks for the
validity of some fact and obtains one of the answers yes, no,
possible and unknown. Retrieval queries return values of the
database matching partially or totally the query.

The general form of a query is
object-name »(« <attribute> »:» <value>{[«,» <attribute>
»:» <value>]} »)» [«;» <interval>]».»

where:
a) object-name is the name of an object (unary predicate);
b) attribute is the name of the attribute object of the query
c) the value may be one of the following:

. a constant;

. an unknown, imprecise or negative value;

. a variable ‘x’ which means that this value should be
retrieved;

d) interval corresponds to the temporal part of the query.
If it is not empty it must be a precise or imprecise time
interval.

5.1 Logic queries
A logic query returns one of the following truth-values yes,
no, possible or unknown depending on the matching between
the query and the database. The value unknown is returned if
there is not any matching. The following query illustrates this
process. Suppose the query employment(employee: ‘joão’,
company: UFPB, salary: <1500); [1994,now]) over the
database described in section 2. There are two objects
employment(O1) and employment(O3) matching (partially)
the query. The result of the processing is shown in the table
below.

object emplo
yee

compa
ny

salary time intra-object
truth value

employ-
ment(O1)

Possi-
ble

Possi-
ble

Yes Yes Possible

employ-
ment(O3)

Yes Yes Yes Yes Yes

The final inter-object value, combining Possible with Yes,
becomes Yes.

After the truth evaluation of each attribute an intra-object
evaluation determines the truth value of each object, and an
inter-object evaluation determines the final result of the
query. Details of this evaluation are described in [2,23].

5.2 Retrieval queries
A retrieval query returns values stored in the database. In
some cases to these values a possibility predicate is attached.
Suppose we want to know who worked for UFPB, we state
the query employment(employee: x, company: UFPB). The

Towards A Logic For Representation And Retrieval Of Incomplete Temporal Objects16

object employment(O1) returns possible(joão) and
possible(antônio), whereas employment(O3) returns
yes(joão).

6. Conclusion
In this article a modal temporal logic has been introduced to
deal with incomplete temporal objects. By this, we have tried
to obtain a formal model of the intuition of indeterminacy
which normally occurs in some information systems. This
logic should be the basis of the reasoning engine of the
system called MITO.

We have intentionally excluded imperfect information
associated with probabilistic, possibilistic or fuzzy functions.
In our opinion, there are many application domains where the
information is imprecise without knowledge about values of
such functions. These can be project, planning, legal and
historical databases in general.

One of the few approaches which considers temporal
indeterminacy is the TSQL2 proposal [25]. They define an
indeterminate period which coincides with our temporal
intervals with imprecise endpoints (with during, after or
before). The necessity to compare periods (or intervals) in
order to process joins over temporal intervals (in TSQL2) or
to answer queries (in MITO) needs a redefinition of the
Before predicate. In TSQL2 this is obtained by using an
parameter called ordering plausibility as lower bound of the
probability that a period α is before a period β. In MITO we
use the modal operators K and M, and the four-valued logic
which is adequate for applications considered, where a
probability mass function is absent.

We have implemented a first version of MITO in LPA-
Prolog for Windows [16], which allows storing and querying
incomplete temporal objects. A difficult task is updating such
a system, and we should consider monotonic and non-
monotonic updates [2].

From the formal standpoint, the semantics of the LITO must
be defined and the completeness of the logic be proven.

APPENDIX – Demonstration of a proposition
of Section 4

PROPOSITON:

∀x∀I∀t (Time(x, [during(I), after(t)]) → sometime Time(x,
I) ∧ Time(x, [end(I), succ t]) ∧ sometime Time(x, [succ t,
∞])).

Observation: the clause Time(x, [end(I), succ t]) is only
applicable when end(I) ≤ t.

At the right side of each derivation step, we put the step
number and the hypothesis (H), definition (D), axiom (A),
rule (R) or lemma (L) number used.

We present firstly three lemmas.

Lemma 1: ∀x∀I Time(x, I) → sometime Time(x, I)

1. ¬ sometime Time(x, I) thesis’s negation

2. ¬ ∃t(t ∈ I ∧ Time(x, [t, t])) 1 with D13

3. ¬ Time(x, I) ↔ ¬ ∃t(t ∈ I ∧ Time(x, [t, t]))
1 with A15

4. ¬ Time(x, I) 2,3 with R1.

Lemma 2: ∀x∀I1∀I2 sometime Time(x, I1) ∧ (I1 ⊆ I2) →
sometime Time(x, I2)

1. ∃t(t ∈ I1 ∧ Time(x, [t, t])) ∧ (I1 ⊆ I2) H with D13

2. ∃t(t ∈ I1 ∧ Time(x, [t, t])) ∧ ∀t1 (t1 ∈ I1 → t1 ∈ I2)
1 with A6

3. ∃t(t ∈ I1 ∧ Time(x, [t, t])) ∧ (t ∈ I1 → t ∈ I2)
2 with (t1/t)

4. ∃t(t ∈ I2 ∧ Time(x, [t, t])) 3 with R1

5. sometime Time(x, I2) 4 with D13.

Lemma 3: ∀x∀I1∀I2 (Time(x, I2) ∧ (I1 ⊆ I2) →
Time(x, I1))

1. ∀t∀x∀I1∀I2 (t ∈ I1 → t ∈ I2) ∧ Time(x, I2)
H with A6

2. ∀t∀x∀I1∀I2 (t ∈ I1 → t ∈ I2) ∧ (t ∈ I2 →
Time(x, [t, t]))
1 with A15

3. ∀t∀x∀I1 (t ∈ I1 → Time(x, [t, t])) 2 with A1

4. ∀x∀I1 (Time(x, I1) 3 with A15.

Demonstration of the proposition:

1st part: ∀x∀I∀t (Time(x, [during(I), after(t)]) →
 sometime Time(x, I))

1. ∀x∀I∀t (∃t1 (t1 ∈ I) ∧ Time(x, [t1, after(t)]))
H with A21

2. ∀x∀I∀t (∃t1 (t1 ∈ I) ∧ Time(x, [t1, t1])) 1 with L3

3. ∀x∀I sometime Time(x, I) 2 with D13.

2nd part: ∀x∀I∀t (Time(x, [during(I), after(t)] →
Time(x, [end(I), succ t])

4. ∀x∀I∀t∃t1 (t1 ∈ I) ∧ ∃t2(t < t2 ∧ Time(x, [t1, t2]))
1 with A26

5. ∀x∀I∀t∃t1 (t1 ∈ [begin(I), end(I)] ∧ ∃t2 (t < t2 ∧ Time(x,
[t1, t2])) 4 with D14

6. ∀x∀I∀t∃t1 (t1 < end(I) ∨ (t1 = end(I))]) ∧ ∃t2 (t < t2 ∧
Time(x, [t1, t2])) 5 with D5

7. ∀x∀I∀t∃t1 (t1 < end(I) ∨ (t1 = end(I))]) ∧ ∃t2 (t < t2 ∧ t <
succ t ∧ ∀t3(t < t3 → succ t < t3 ∨ succ t = t3) ∧ Time(x, [t1,
t2])) 6 with D7

8. ∀x∀I∀t∃t1 (t1 < end(I) ∨ (t1 = end(I))]) ∧ ∃t2 (t < t2 ∧ (t <
t2 → succ t < t2 ∨ succ t = t2) ∧ Time(x, [t1, t2]))

7 with (t3/t2)

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 17

9. ∀x∀I∀t∃ t1 (t1 < end(I) ∨ (t1 = end(I))]) ∧ ∃t2 (succ t < t2

∨ succ t = t2) ∧ Time(x, [t1, t2])) 8 with R1

10. ∀x∀I∀t∃ t1∃ t2 ([end(I), succ t] ⊆ [t1, t2] ∧ Time(x, [t1,
t2])) 9 with D6

11. ∀x∀I∀t Time(x, [end(I), succ t]))
10 with L3.

3th part: ∀x∀I∀t (Time(x, [during(I), after(t)]) → sometime
Time(x, [succ t, ∞]))

12. ∀x∀I∀t Time(x, [succ t, succ t])) 11 with A15

13. ∀x∀I∀t sometime Time(x, [succ t, succ t]))
12 with L1

14. ∀x∀I∀t sometime Time(x, [succ t, succ t]) ∧ ([succ
t, succ t] ⊆ [succ t, ∞]) 13 with A6

15. ∀x∀I∀t sometime Time(x, [succ t, ∞]) 14 with L2.

7. References
1. Abiteboul S, Hull R, Vianu V. «Foundations of Databases».

Addison-Wesley, 1995, pp 487-507
2. Bezerra E, Schiel U, Ferneda E. «MITO - Manipulation of

Incomplete Temporal Objects». In: Anais do XII Simpósio
Brasileiro de Banco de Dados, Fortaleza – Ce, 1997, pp 364-
374

3. Bezerra E, Schiel U, Nóbrega H. «Uma abordagem formal à
representação e manipulação de objetos temporais
incompletos». In: Anais da VII Semana de Informática da
Bahia, Salvador – Ba, 1998, pp 1-15

4. Böhlen M, Chomicki J, Snodgrass R, Toman D. «Querying
TSQL2 Databases with Temporal Logic». In: Apers P,
Bouzeghoub M, Gardarin G. (eds.) Advances in Database
Technology: EDBT’96. Springer-Verlag, 1996, pp 325-341
(Lecture Notes in Computer Science No. 1057)

5. Codd E. «Extending the database relational model to capture
more meaning». In: ACM Transactions on Database Systems,
Vol. 4, No. 4 ,1979, pp 397-434

6. Chomicki J. «Temporal Query Languages: A Survey». In:
Gabay D, Ohlbach H. (eds.) Temporal Logic: ICTL’94.
Springer-Verlag, 1994, pp 506-534 (Lecture Notes in
Computer Science volume 827)

7. Dey D, Sarkar S. «Extended SQL Support for Uncertain
Embley D, Goldstein R. (eds.) Conceptual

Modeling: ER’97. Springer-Verlag, 1997, pp 102-112
(Lecture Notes in Computer Science No. 1331)

8. Etzion O, Jajodia S, Sripada S. «Temporal Databases:
Research and Practice». Springer-Verlag, 1998

9. Emerson E. «Temporal and Modal Logic». In: van Leeuwen J.
(ed) Handbook of Theoretical Computer Science.
Elsevier/MIT Press, 1990

10. Enderton H. «A Mathematical Introduction to Logic».
Academic Press, 1972

11. Gadia S, Nair S, Peon Y. «Incomplete Information in
Relational Temporal Databases». In: Proc. 18th. Conference
on Very Large Databases, Vancouver, 1992

12. Gabbay D, Hodkinson I, Reynolds M. «Temporal Logic:
Mathematical Foundations and Computational Aspects».
Oxford University Press, 1994

13. Griffiths A, Theodoulidis B. «SQL+i: Adding Temporal
Indeterminacy to the Database Language SQL». In: Proc. 14th.
British National Conference On Databases, Edinburgh, 1996

14. Keller A, Wilkins M. «On the Use of an Extended Relational
Model to Handle Changing Incomplete Information». In:
IEEE Transactions on Software Engineering, No. 7, 1985

15. Levesque H. «The Logic of Incomplete Knowledge Bases».
In: Mylopoulus K, Brodie M. (eds) Readings of Artificial
Inteligence & Database. Morgan Kaufmann Publishers, Inc.,
1994, pp 328-341

16. LPA-WIN-PROLOG 3.0. Programming Guide by Bria D.
Steel, 1996

17. Liu K, Sunderraman R. «Indefinite and Maybe Information in
Relational Databases». In: ACM Transactions on Database
Systems, Vol. 15, No. 1, 1990, pp. 1-39

18. Melton J. «SQL/Temporal». ISO/IEC JTC 1/SC 21/WG 3
DBL-MCI-0012, 1996

19. Nakata M, Fresconi G, Mura T. «Handling Imperfection in
Databases: A Modal Logic Approach». In: Hameurlain A,
Tjoa M. (eds) Database and Expert Systems Applications:
DEXA’97. Springer-Verlag, 1997, pp 613-622 (Lecture Notes
in Computer Science No. 1308)

20. Oresotu B. Um sistema de representação e recuperação de
dados incompletos e informação temporal. MSc thesis,
Federal University of Paraíba, Campina Grande, 1988

21. Parsons S. «Current Approaches to Handling Imperfect
Information in Data and Knowledge Bases». In: IEEE
Transactions on Knowledge and Data Engineering, No. 3,
1996

22. Rambaugh J, Blaha M, Premerlani W, Eddy F, Lorensen W.
«Object-Oriented Modeling and Design». Englewood Cliffs,
Prentice-Hall, 1991

23. Schiel U. «Representação e recuperação de informação
temporal e incompleta». In: Anais do 3O. Simpósio Brasileiro
de Inteligência Artificial, Rio de Janeiro, 1986, pp 271-281

24. Snodgrass R. «The Temporal Query Language TQUEL». In:
ACM Transactions on Database Systems, volume 12, No.2,
1987, pp 247-298

25. Snodgrass R. (ed). «The TSQL2 Temporal Query Language».
Kluwer Academic Publishers, 1995

26. Tansel A, Clifford J, Gadia S, Jajodia S, Segev A, Snodgrass
R. «Temporal Databases». The Benjamin/Cummings
Publishing Company, Inc., 1993

27. Tsotras V, Kumar A. «Temporal Database Bibliography
ACM SIGMOD Record, Vol. 25, No. 1, 1996, pp

41-51
28. Zicari R. «Incomplete Information in Object-Oriented

ACM SIGMOD Record, Vol. 19, No. 3, 1990,
pp 5-1

