
Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 191

Applications Development Environment for the CAD Information
Systems Design

Alexandre Gavrilov Alexandre Saevsky
Cybernetics Department, .

MEPhI .
Moscow, Russia Moscow, Russia
bs-avg@east.ru .

Abstract
The paper describes a developing environment for
AutoLisp. The Developers Environment goals, struc-
ture and theoretical base are discussed. The presented
Project Subsystem organisation provides the powerful
optimisation ability. The foundations and results of this
optimisation are present. The subjects of this paper are
the results of the evaluation model constructing, the ar-
chitecture development and the toolkit system design
and implementation. One of the main problems of the
application systems design is the choice of the reliable
toolkit. AutoCAD is a widely spread CAD environ-
ment. Now AutoCAD includes the powerful graphic
editor, SQL-level data bases toolkit, GUI features of
DCL and so on. From version Release-12, one of the
supporting platforms is 'Microsoft Windows'.

1. Introduction
The subjects of this paper are the results of the evaluation
model constructing, the architecture development and the
toolkit system design and implementation.

One of the main problems of the application systems design
is the choice of the reliable toolkit. AutoCAD is a widely
spread CAD environment. Now AutoCAD includes the pow-
erful graphic editor, SQL-level data bases toolkit, GUI fea-
tures of DCL and so on. From version Release-12, one of the
supporting platforms is 'Microsoft Windows'.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the CSIT copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Institute for Contemporary Education JMSUICE. To copy otherwise, or to
republish, requires a fee and/or special permission from the JMSUICE.

Proceedings of the Workshop on Computer Science and
Information Technologies CSIT’99
Moscow, Russia, 1999

But the AutoCAD customisation language i.e. AutoLISP has
no GUI interface, development support for programmers and
applications packager tools. It's a reason for the AutoLISP
Developers Environment (DevEn) creation.

2. AutoLISP Developers Environment

2.1 Developers Environment goals.

This environment is intend to AutoLISP developers, which
elaboration result is delivery packages. The main part of their
work is the LISP-programs written and debugging, the pack-
ages constitution. It's a reason, that the DevEn consists of the
text editor, debugging and errors diagnostic tools (static and
dynamic) and delivery packages creation means, which in-
cludes AutoLISP compiler and run time support system. Now
we present general statements of the Developers Environ-
ment organisation and more detail consider the application
packages creation.

The Developers Environment is implemented as a powerful
integrated functional systems, which contains two dialects of
LISP. Subset Common LISP named LEX with the object
oriented subsystem was applied as the internal implementa-
tion language. AutoLISP evaluation system was supplied as a
parallel to the Standard AutoCAD's interpreter.

2.2 Theoretical foundations
The categorical combinatory logic is chosen for the evalua-
tion model. Its embodiment is a categorical abstract machine
(CAM). In our case the traditional variant of CAM is ex-
tended. The call-by-name and freeze-evaluate means are
added to Curien's model. LISP dialects compilation is based
on the mathematically strong translation scheme (see Figure
1). This property provides the semantic correctness of the
executing code and ensure the safe optimisation facility for
source programs packaging.

Applications Development Environment for the CAD Information Systems Design192

2.3 DevEn structure
Any means which supports the development of AutoCAD
applications are: Complete LISP dialects emulation, Source
Debugger, Syntax Checker, Integral Text Editor, Compiler
and runtime support kernel, Inspector of functional objects
and AutoCAD entities and a rich set of debugging features,
like expression's value watch, Backtrace dialog, easy source
code access (see Figure 2). The integration of our system
with the 'Microsoft Windows' environment gives the ability
of the traditional object and interface means of this environ-
ment using. So, we implement the powerful toolkit for the
AutoLISP application systems constructing.

3. Project subsystem organisation
At this chapter we detail consider the application packages
organisation. The idea of 'project' is chosen for the large
source code programs organisation. The project description
is placed in one text file and contains main information for
the package creation and usage. The native AutoLISP se-
mantic modifications are localised in this place. There are
three considerable parts of the project subsystem usage:

1) the construct stage, which includes the program codes
typing and static checking of its correctness by interactive
DevEn;

2) the build stage, which includes the delivery packages
building with compiling, merging and optimisation features
by AutoLISP Compiler;

-Operation---
Application Abstraction Dotted pair Recursion

-Functional Language---
(E f x) (lambda x h(x)) (cons x y) f = if (x=0)
(car '(x . y)) then a
(cdr '(x . y)) else g(f(x-1))

-Lambda-calculus---
(f x) Lx.h(x) [x,y] = Lxyr.rxy f = Y(Lx.(= x 0) a
p[x,y] = x, p = CIK (g (f (- x 1)))),
q[x,y] = y, q = CI(KI) Y = Lf.((Lx.f(x x))

-Catgorical theory--

-CAM-codes --
(push) | [f]p | (swap) (cur [h(x)](p.x)) (push)|[x]p|(swap) (push dum cons push if
| [x]p | (cons app) |[y]p|(cons) (push)|[x](p.f)|(swap
 quote 0 cons eq)[a](p.f)
 (push)| [g](p.f) |(swap
 push cdr swap push) |
 [x](p.f)|(swap quote 1
 cons sub cons app cons
 app) wind cdr)

Figure 1. The categorical support of the functional languages

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 193

3) the run time - the execution of the source and compiled
programs by Run-Time Support system.

3.1 Construct stage
 Main directions of construct stage are:

1. Edit project files with browsing

 - easy access to file

 - easy access to symbol definition

 - easy access to symbol references

 - find string

 - replace sting

 - find S-expression with pattern matching

 - replace S-expression

- analyse based lexical colors

2. Check and Analyze features

 - syntax (system and user declared)

 - special data base creation

 - static data base analysis

 - function calls correctness

 - external (unresolved) references and variables

 - unreferenced definitions and variables

 - main statistic

 - alphabetic ordered list of local variables

 - safe optimisation recommendations

 - compile specific

3. Debug

 - file consistence

 - debugger

 - data bases toolkit

4. User Interfaces

5. Documentation support features.

3.2 Build stage
More important features, that are provided by LISP compiler,
are:

 - speedup of loading and running

 - function calls linkage

 - package building

 - fast loading files concatenation

 - variables names collision extraction

 - names security

 - consult, provide, require features

Figure 2. AutoLISP Developers Environment Structure

Applications Development Environment for the CAD Information Systems Design194

 - function calls substitution

 - strip of surplus information

3.3 Run time stage
The run time stage must be provide the AutoLISP package
execution, where the package may take one of the following
forms:

 - only lisp files,

 - only fast load format (fas) compiled files, where each fas-
file relate to one source lisp file,

 - single fas-file, which includes the whole package.

4. Code Optimization

4.1 Reasons
One of the main lacks of the natural AutoLISP is absence of
the tools for powerful packages creation. DevEn provides the
ability of the standalone powerful applications creation by
the optimising compiler The main optimisation features are:

• the functions calls linkage;

• the variables localisation;

• the names dropping;

• the fast-load code generation;

• the inline code expansion;

• the continuations-depended compilation;

• the peep-hole optimisation;

• the source codes transformation;

• the multiple literals creation.

 The correctness of the optimising codes execution is based
on the strong mathematical foundation. The optimisation
increases the application speed 4 - 10 times as much, and
modern packaging forces the user and commercial value of
the elaboration.

4.2 The optimisation correctness analysis
We should note, that as for other compilers, turning on pro-
gram optimisation may bring bugs to the valid code. The
builder performs partial analysis of correctness of program
optimisation. Thus it extracts the information about:

• explicit function calls

• explicit SETQ and DEFUN variable assignments

• explicit value references

• localisation of variable assignments and value references

• QUOTED argument of EVAL form

• QUOTED function argument for APPLY and MAPCAR

• static (explicitly typed) action-strings in ACTION_TILE
function calls

• exporting to ACAD information (described using special
pragmas and declarations) to avoid drop names

It does not account:

• the dynamically build code that can be called than using
EVAL, APPLY, MAPCAR and LOAD

• setting dynamically supplied variables by SET

• dynamic (program evaluated) action-strings in
ACTION_TILE function calls

All the optimisations leads in general to changing program
semantics. It may lead to losing access to program functions
and symbols from the outer application and from the Auto-
LISP console. Thus some functions available from console in
interpreter mode turns unknown in compiled mode. Also
some functions may stay available from outer user, but rede-
fining the functions will not lead to losing all references to
old function definition.

However, the compiler intend to preserve the behaviour of
the project components relatively to the other project parts.
Note, that if your code do not use the AutoLISP expressions
listed before, the ANALYSER will supply the full informa-
tion for program optimisation correctness.

4.3 Checking optimising consistency
The compiler always check optimising consistency. The con-
sistency conditions deals either with project or with current
top-level expression. The optimising revoke conditions are
divided to hard-revoke conditions and safe-revoke condi-
tions. The hard optimising revoke conditions deals with the
compiler abilities and rude semantic changes.

The compiler always checks this conditions and issue the
warnings when the user recommended an optimisation but
the compiler cannot apply it because of a revoke condition.
This conditions are briefly listed below.

LINK conditions

The compiler links system (build-in) lisp function when they
were not redefined and not bound and not assigned anywhere
in the project.

The compiler links user function calls if they were defined
using DEFUN once (and only once) in the entire project and
all the function calls argument number fits to the found defi-
nition.

DROP conditions

The compiler tries to drop function name only if all the func-
tion calls should be linked to the function definition.

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 195

The compiler does not drop function name for a function
definition if

• The symbol called by name

• exported to ACAD by export-to-acad -
pragma slot.

• referred in ACTION_TILE action string

• referred as quoted function argument for APPLY or
MAPCAR somewhere in the project.

LOCALISE conditions

The compiler does not localise a variable in bound lists in
DEFUN LAMBDA and FOREACH expressions if :

• The variable has a non-local reference (or assignment) to
the variable within the outer top-level expression.

• The variable is called by name (as it was defined in pre-
vious subsection)

• The variable symbol appears in the function name posi-
tion somewhere in the outer top-level expression.

Safe-revoke conditions and SAFE optimising mode

Besides the hard optimising revoke conditions, the current
compiler allows to treat the stronger revoke conditions that
we mentioned as safe-conditions. That can decrease the
amount of actually applied optimisations but provide a better
proof of the code correctness. The safe-conditions deals with
uncertain effects that can take place while running a program
and lead to failure of optimised program while the source
code were just valid.

An example

One can use a function symbol FOO and define it by DEFUN
and then link it. Let the FOO being also assigned somewhere
in the code using (setq FOO <expr>). That may change the
code semantic and may not change it. Thus, if the assigned
value <expr> is intended to be used as function body, the
code semantic will deviate when compiling without safe-
mode. The safe mode will revoke the linking and the initial
semantic will be preserved. On the other hand, if the identical
names are used only independently, the safe-mode applies the
overmuch care of program semantic and possibly lacks the
code efficiency. However, the safe-mode is on by default and
that is recommended mode when you face the compiler first
time.

Link safe-revoke conditions:

• The symbol is bound as parameter anywhere in the proj-
ect

• The symbol is bound as auxiliary variable and refer-
enced as value anywhere in the project

• The symbol is explicitly assigned somewhere (by SETQ
statement).

Drop safe-revoke conditions:
The symbol is referenced as value.

Link safe-revoke conditions:

• The variable has a non-local reference or assignment to
the variable within the project

• The variable is called by name (as it was defined in pre-
vious subsection).

5. Optimisation Foundations

5.1 General Notion
prj ∈PRJ That is a DevEn project considered now as
a sequence of source files and (optionally) required entities

sfile ∈SRCFILES (Lisp source files)

prjconsult ∈PROJECTCONSULT

expr ∈EXPR (e1, e2 ...)

s ∈SYM (f, x, y, …)

n ∈N (i, j, k, l...)

Fin(Set) - set of finite subsets of Set.

Bind-expr := (DEFUN …) | (LAMBDA …)
[FOREACH]

(Meta)variable f is proposed for function symbols, and x,y..
are used for bound symbols.

We say that e1 is an valuable true sub-expression of e2 and
denoted it e1 ⊂* e2 iff

e2= (DEFUN name (…) … e1…) or

e2= (LAMBDA (…) … e1…) or

e2= (SETQ … v1 e1…) or

*e2= (EVAL ’e1) or

*e2= (MAPCAR ’(LAMBDA (…) … e1 …) …) or

*e2= (APPLY ’(LAMBDA (…) … e1 …) …) or

e2= (COND … (e1 …) …) or

e2= (COND … (… e1) …) or

e2= (FOREACH var e1 …) or

e2= (FOREACH var … e1 …) or

*e2= (’(LAMBDA (…) … e1 …) …) or

e2= (f … e1 …) where f ∉∉ special-form-name

special-form-name := QUOTE | FUNCTION |
PRAGMA | TRACE | UNTRACE | …

and, or, if are not considered here as special forms

Applications Development Environment for the CAD Information Systems Design196

We say that e1 is an valuable sub-expression of e2 and de-
noted it e1 ⊂ e2 iff e1 , e2 belongs to the transitive closure of
⊂* - relation.

LISP source files are considered as sequences of tl-
expressions, that is top-level expressions. Thus we drop
comments & illegal data. If the parser meets reader error we
treat this file as having the last top level equal to error-
value.

Free (expr) :=

{expr} if expr ∈SYM

{} if expr is atom and not symbol

Free(e) if expr = (EVAL (QUOTE e)) or expr =
(FQUOTE e)

Free(e) U Free(e1) if expr = (APPLY (QUOTE e)
e1) and e is (LAMBDA …)

∪,(e1, e2… en) Free(ei) U Free(e) if expr =
(MAPCAR (QUOTE e) e1…en) and e is (LAMBDA …)

{} if expr = (QUOTE e1)

∪,(e1, e2… en) Free(ei) \ {x1,… xk} if expr =
(DEFUN name (x1,… xk) e1…en)

∪,(e1, e2… en) Free(ei) \ {x1,…xk} if expr =
(LAMBDA (x1,… xk) e1…en)

(∪,(e1, e2… en) Free(ei) \ {x})U (Free (expr)) if expr
= (FOREACH x expr e1…en)

∪,(e1, e2… en) Free(ei) U Free(fun) if expr = (fun
e1…en)

5.2 Ground functions

Bound function gets the set of symbols bound in the expres-
sion

IBound-as-parameter (expr) =

{x1…xk} iff expr = (DEFUN name (x1…xk […]) …)

{x1…xk} iff expr = (LAMBDA (x1…xk [/ …]) …)

{} otherwise

Bound-as-parameter (expr) = ∪,e ⊂expr IBound-as-
parameter(e)

IBound-as-aux(expr) =

{x1…xk} iff expr = (DEFUN name (… / x1…xk) …)

{x1…xk} iff expr = (LAMBDA (…/ x1…xk) …)

{x} iff expr = (FOREACH x …)

{} otherwise

Bound-as-aux(expr) = ∪,e ⊂expr IBound-as-aux(e)

Bound (expr) = Bound-as-aux(expr) U Bound-as-
parameter(expr)

Funcall-argnum function gets the number of arguments in
function calls in expr for a given function f

I-Funcall-argnum (expr, f) =

⊥ if expr is not (f …)

⊥* (reference without argument number)

if expr = ({APPLY | EVAL | MAPCAR}
’f …)

n if expr = (f e1 …en)

⊥ < ⊥* < n < T

sup (n,m) = T iff n ≠m

Funcall-argnum (expr,f) =Sup,e ⊂expr (I-Funcall-argnum
(e, f))

Defun-argnum function gets the number of arguments in
function definitions in expr for a given function f.

I-Defun-argnum (expr, f) =

⊥ if expr is not (DEFUN f (…) …)

n if expr = (DEFUN f (e1 …en [/ …])
…)

Defun-argnum(expr,f) =Sup,e ⊂expr (I-Defun-argnum (e,
f))

Defun-number function gets the number of DEFUN-
statements in expr for a given function f.

I-Defun-number(expr,f) =

1 if expr = (DEFUN f (…) …)

0 otherwise

Defun-number(expr,f) = ∑,e ⊂expr (I-Defun-number (e,
f))

Value-reference function gets the set of symbols referenced
as value in expr.

I-Value-references (expr) =

{s} if s=expr

{f} if expr = (EVAL ’f)

{} otherwise

Value-references (expr) = ∪,e ⊂exprI-Value-references (e)

Assigned function gets the set of symbols assigned in expr.

I-Assigned(expr) =

{s1…sk} if expr = (SETQ s1 e1 … sk ek)

{s} if expr = (SET ‘s e)

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 197

{s} if expr = (FOREACH s e)

{} otherwise

Assigned(expr) = ∪,e ⊂exprI-Assigned(e)

Non-local-Assigned function gets the set of symbols as-
signed in expr, not bound in the assigning scope

Non-local-Assigned(expr) = ∪,bind-expr ⊂expr(As-
signed(bind-expr) ∩ Free (bind-expr)}

Non-local-value-referenced function gets the set of symbols
referenced in expr not bound in the reference scope.

Non-local-value-referenced(expr) = ∪,bind-expr ⊂expr
(Value-referenced(bind-expr) ∩ Free (bind-expr)}

5.3 Certain equations
Now we extend the predicate definitions to the projects

Bound-as-aux prj = ∪,tl ⊂ PRJBound-as-aux(tl)

Bound-as-parameters prj = ∪,tl ⊂ PRJBound-as-
parameter(tl)

Funcall-argnum prj(f) =Sup,tl ⊂ prj (Funcall-argnum (tl, f))

Defun-argnum prj(f) =Sup, tl ⊂ prj (Defun-argnum (tl, f))

Defun-number prj (f)= ∑,tl ⊂ prj Defun-number(tl,f)

Value-references prj = ∪,tl ⊂ prjValue-references (tl)

Assigned prj = ∪,tl ⊂ prjAssigned(tl)

Non-local-Assignedprj = ∪,tl ⊂ prjNon-local-Assigned (tl)

Non-local-value-referencedprj = ∪,tl ⊂ prj Non-local-
value-referenced (tl)

The following predicates will make the following clauses less
verbose and more apparent.

DEFINED prj = {x | Defun-number prj(x) > 0}

ONCE-DEFINED prj = {x | Defun-number prj (x) = 1}

CALLED prj = {x | Funcall-argnum prj (x) ≠ ⊥}

CALL-BY-NAME prj =

• {call to function appears in not-link pragma context}

• EXPORT-TO-ACAD pragma exists

• function name appears in DEFUN and fits to: AUTO-
EXPORT-TO-ACAD-PREFIX

• {expr = ({APPLY | MAPCAR} ’f …) found as a
valuable true sub-expression of any top-level expres-
sion in the project.

EXTDEFP prjclosure = DEFINED prjclosure

INIT-SYS-FUN - the set of initially defined functions fa-
miliar to AUTOLISP compiler

FUNCTIONS = DEFINED U INIT-SYS-FUN

5.4 Forbidding Optimize oracles
Not-sys-fun =

{f∉INIT-SYS-FUN}
U DEFINED
U Assigned
U Bound
U EXTDEFP
U {f∈INIT-SYS-FUN | Funcall-argnum(f) ⊄ Init-
argnum(f)}

Cannot-link-p prj (f) =

if f∈ INIT-SYS-FUN
then f∉ Not-sys-fun
else
{f∉ONCE-DEFINED
 or {DEFUN and current tlf are in different

modules}
 or Funcall-argnum(f) = T
 or Funcall-argnum(f) ≠ Defun-argnum(f)
;; The safe condition follows
 or f∈Bound-as-parameter
 or (f∈Bound-as-aux and f∈Value-referenced)
 or f∈Assigned }

Cannot-drop tlf (f)=
{exists function call and DEFUN in different mod-

ules}
 or Cannot-link-p prj (f)
 or {f ∈ CALL-BY-NAME}
;; Safe condition follows
 or (if {DEFUN f == current tlf} Non-local-value-

referenced (f) else Value-referenced (f))

Applications Development Environment for the CAD Information Systems Design198

The not-drop-from-aux-p predicate is always “safe”! This
predicate appears …

Not-Drop-from-aux-p tl (f) =

Value-referenced prj

U Assigned prj

U CALL-BY-NAME prj

U EXTDEFP prjclosure

U EXTREFP prjclosure

Cannot-localise-p tl (f) =

Non-local-assigned tl
Non-local-value-referenced tl
DEFINED
;; Safe conditions follows
U CALLED
U EXTDEFP
U EXTREFP
U Non-local-assigned
U Non-local-value-referenced
U CALL-BY-NAME

6. The optimisation results
The analyse of the compiler efficiency was based on the
Gabriel’s tests set. This set includes the large structures han-
dling tests, mathematical tests, recursive calls etc. The results
of testing are represented in Table 1. The analyse shows, that
the DevEn packages aren’t yield to analogic systems by main
testimonials.

Conclusion
Thus, the usage of the project notion in AutoLISP Develop-
ers Environment provides the increase of the comfort and
efficientence of the large application packages design in
AutoCAD, the speed up of delivery products and code secu-
rity for technology know-how safety.

Acknowledgement
I wish to thank Prof. V. Wolfengagen for his assistance in
preparing the final version of this paper.

References
1. AUTOCAD Release 13 Customization Guide, Autodesk,

1994.

2. Banaitre J., Jones S., LeMetayer D. “Prospect for func-
tional programming in software engineering”, ESPRIT-
302, 1991.

3. Cousineau G., Curien P.-L., Mauny M., Suarez A.
“Combinateurs Categorique et Implementation des Lan-
gages Fonctionelles”. - LNCS N242, 1986, p. 85 - 103.

4. Create and Debug LISP Code with ADE. Cadence. No-
vember, 1993.

5. Eriksen L. AutoLISP Tools. A look at Four Debugging
Products. Cadence. March, 1994.

6. Field A.J., Harrison P.G. Functional Programming.-
Addison - Wesley publishing Company, 1988.

7. Gabriel R.P. Performance and Evaluation of Lisp System,
Mit- Press. 1985.

8. Gavrilov A.V. “New Developers Tools for the CAD In-
formation Systems Design”. In Third International Work-
shop on Advances in Databases and Information Systems
(ADBIS'96), MEPhI Publishing, Moscow, 1996.

9. VitaL Lisp. “Development, debugging, delivery tools for
Basis Software, Exton, PA 19341, 1995.

Table 1. The Compiler testing results .

System Test LOAD
(s)

DERIV
(s)

TAK
(s)

TAKL
(s)

TIM
(s)

FIB
(s)

ACAD 12R lsp 11 182 93 141 99 171
lsp 14 89 46 74 44 41DevEn

Optimise
Compiler

fas 2 36 11 16 9 17

