
Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 1

Specification and Result Representation of Complex Navigational
Queries for Object Databases

Alexander A. Bukatov Dmitry A. Zastavnoy
Computer Center Computer Center

Rostov State University, Russia Rostov State University, Russia
 baa@rnd.runnet.ru dzast@oberon.rnd.runnet.ru

Abstract
We propose an advanced query language for object
databases that gets facilities to specify the whole paths
consisting of database objects associated with
themselves by any relationships. The article includes
both the introduction to high-level navigational
language and the way of representation of complex
queries for providing an access to the query results
from host programming language. Also we figure out
the implementation tasks.

1. Introduction

This article introduces an query language proposed for
accessing data from object databases at high-level
navigational style. We will consider the following aspects
concern with our query:

• the concept of high-level navigation based on
relationship linking database objects and expressed in
the form of identifying expression which specify sets of
relationship paths in the database (high-level or primary
navigation);

• a semiformal identifying expressions definition that is
proposed for the aim of identifying database object, and
three kinds of expression values: partial, total and mixed
ones;

• the query language along that provides the possibilities
to access data stored in database objects;

• the way for representation of the query results by
complex structure of flat tables. It is used for performing
the secondary navigation inside it and fetching the held

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the CSIT copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Institute for Contemporary Education JMSUICE. To copy otherwise, or to
republish, requires a fee and/or special permission from the JMSUICE.

Proceedings of the Workshop on Computer Science and
Information Technologies CSIT’99
Moscow, Russia, 1999

data from it by a host programming language; an actual
procedure for database query calculation, which is based
on the concept of contexts, introduced by the author.

The query language is considered from three points of view.
At first, the formal definition of our language based on high-
level navigation through relationships is provided. Then, the
problem of the representation of the results of complex and
complicated queries is in focus of our consideration. We
expect to present the way for representation such results,
which is convenient for accessing and manipulating data
from host languages. Besides, the concept of the secondary
navigation, i.e. the navigation inside this representation of a
query result is argued. The last point of view covers
implementation tasks.

Our general approach to data retrieving by the query
expression is the following: a query expression specifies an
image of some part of database. This image is being kept by
in accordance with the navigational origin of the data.

The preliminary results of our investigations have been
presented at works [1,2,3,4]. The work [4] proposes an
example of applying our approach to data modeling for
CASE systems. The discussion of problems concerned with
object query languages can be found in [5,6] as well as in
notable work [7], that supposes the similar approach. The
descriptions of existing standard (ODMG 2.0) and the most
well known object systems, such as Postgres, are published in
[8,9].

2. The extensional graph concepts
The native and wide spread way for visualized representation
of the database state is based on the notion of an extensional
graph. The extensional graph, by our suggestions, is to be
basis for the investigations of the advanced query language
for object databases, because it provides the most suitable
manner for user’s cognitivity of associations between
database objects and expressing complex database
queries.We consider the extensional graph consists of nodes
and directed hedges between them, which are corresponded
to database objects and relationships instances respectively.
The nodes are labeled by the names, each of them is formed
by the pair <object type, object name>, and hedges are

Specification and Result Representation of Complex Navigational Queries for Object Databases2

labeled by relationships names. Any hedges are directed from
the objects which is introduced as the owner of relationship
instance to the target object.

The Figure 1 shows an example of the extensional graph for
the database that holds the representation of the program
shown on Figure 2. These examples were primary discussed
at work [4].

program example;

var i , j : integer;

x : real;

begin

i := 0;

j := 1;

if (i && j) then x := 2.3;

else x := 5.7;

end.

Figure 2. Simple program

We can see on Figure 1, some nodes are labeled by asterisks
instead of their names; it means these objects do not have any
specific names in the application domain, and they are
anonymous. Nevertheless, all anonymous objects are
distinguished among themselves from the viewpoint of their
identifications.

A simple path in extensional graph is introduced as the list,
which consists of node names and hedges names linking
these nodes. The name of the object type are involved for the
fist object in this path only, because we suggest that each
type name can be determined by knowing the name of
previous type and the relationship name in the list ([3]). If the
relationship names are out of our considerations, these names
can also be missed in formal notations.

Some examples of simple paths in extensional graph shown
on Figure 1 are suggested below.

IF/* ° BINARY/* ° Left/* ° VARIABLE/i

IF/* ° BINARY/* ° Right/* ° VARIABLE/i

IF/* ° ASSIGN/* ° VARIABLE/x

etc.

It is obvious, the fist and the second paths are very similar to
each other. In the other sections we define the query language
that provide the means for specifying the sets of objects by
specifying the set of simple paths which are unified by the
similarity of they structure. Also it will be proposed how
such sets can be represented, stored and accessed by means
of host programming languages is the most convenient
manner.

Figure 1. The example of extensional graph

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 3

2. Identifying expressions and queries
In this sections we define the structure and the values of
identifying expression in semiformal manner. The identifying
expressions, or chains, are the bases for our query language.
We restrict the score of our consideration by dealing with the
expressions, which include the navigation through
relationships. The other operations of the language are union,
filter, reverse navigation, and getting collection values, which
are described at [3]. We consider the general case of
identifying expression definition, which is detailed in the
real-system query language.

The identifying chain is an expression

T•L1•L2•… •LN, (*)

where T is the objects type name, Lj are the relationships
names, j ≥0. Than, j-level of the chain (*) is defined as Ò
chain for j = 0, and Lj for j > 0. Left j-subchain of the chain
T•L1•L2• … •LN is introduced as T• L1• … •Lj expression,
and the right j-subchain of the same chain is Lj+1• … •LN

expression.

Partial value of the chain

It is assumed there are two sets, which are associated with
each database type. The first is the set of type instances, i.e.
database objects of this type. It is denoted by ext(T) notion.
The second set denoted by int(T) consists of all relationship
names which are defined for the objects of the type.

The value L(o), or the instance of L relationship of o source
object, is the set of objects, which are named as target
objects. So, if o ∈ ext(T), L ∈ int(T), than L(o) is {o’1,o’2,
… ,o’K}.

The partial value of the chain is defined by the following
rules:

Val [T] = ext(T) (one-level chain)

Val [T•L1•L2•… •LN] = ∪∪ LN(o) (multi-level chain)

o∈ Val [T•L1•L2•… •LN-1]

It should be noted, the group of objects forming the value of
multilevel chain is not the set in formal sense because it can
include the duplicates of objects, therefore ∪∪ symbol of
union operation denotes the including the same objects into
new “set” and summarizing their multiplicities. The
multiplicity of an object in a set is equal to the number of its
duplicates. It is useful to note sets with the grouped
duplicates: {o1

k1,o2
k2, … , on

kn}, where kj is the multiplicity of
oj object in the set.

Total value of the chain

Now the definition of the total value of a expression is given.
The simple (separated) expression is defined as the
T/n°L1/n1°L2/n2. … °LN/nN expression, where nj are object
names. It is obviously, the separated expression can be

interpreted as the notion of any simple path in an extensional
graph. At the matter of fact, separated expressions are values.

We define the total value of the chain as a set of simple
expression, which are the simple paths generated by this
identifying chain. The set of these simple paths is the
generalized path in the extensional graph.

Mixed value of the chain

Let us consider T•L1•L2•… •LN chain, and the partial value
is calculated for its j-left subchain; its partial value is kept in
{ o1

k1, o2
k2 , … , on

kn} result set. Now we can evaluate the
total values of oj•Lj+1•…•LN for each oj

kj object of the set.
The union of all values calculated by this way forms the j-
mixed value of the chain.

The value of j-level of a chain is defined as the partial value
calculated but not grouped for left j-subchain.

While oj
kj objects can have their multiplicities, the

oj•Lj+1•…•LN expressions inherit the multiplicities of oj
kj

objects. We should keep in mind the following properties:

oj
k • Lj+1 •…• LN = (oj

 • Lj+1 •…• LN)k,

and for a separated expression:

(oj
 ° oj+1 °…° oN) k = (oj

k) ° (oj+1
k) °…° (o N

 k)

Database queries

A database query is an extended identifying expression that
includes lists of the object field names, which are required:

 T : (f1,…,fK) • L1 : (f11,…,fK1)•…• LN : (fN1,…,fKN) (**)

The partial, the total and the mixed values of extended
expressions are defined by the same way. For example, the
total value of the extended expression (**) can be denoted as
the group of all extended simple paths:

{ o:(f1,…,fK) ° o1:(f11,…,fK1) ° … ° oN:(fN1,…,fKN) }

All queries can be divided into two groups: the queries which
consist of the specification of object field names at the last
level only, and the queries, in which the field lists are at the
any levels. The queries of these groups are introduced as the
reduced and the complex queries correspondingly.

In addition to field names, the queries can include object
function names. These object functions are intended to
perform some data processing. Unfortunately we have too
many space to provide the consistent and complete
description on this matter.

3. The representation of query results
Now let us consider the ways of representation of data that
are specified by expressions of our query language.

It should be noted the ways that are involved to represent the
values of queries of the reduced and the complex kinds are
different. Than, our consideration is based on the assumption
that only data fields are required. If all of the object names of

Specification and Result Representation of Complex Navigational Queries for Object Databases4

all paths are required, the total values must be calculated for
each query.

Performing the reduced query is provided by calculating the
partial value of the query chain. In other words, the result of
the query execution consists of object names, their
multiplicities and field data being specified in the query. The
result is simply represented with the flat two-dimensional
tables. Any access to data stored in it and the data
manipulation can be provided by the simple and powerful
technique of cursor that is well-known in relational
technology.

At first glance, there is a simple and obvious way for the
representation of complex navigational queries with the n+1
– length chain. It is provided by the two-dimensional table,
that consists of n+1 columns and the rows; each of them
holds one simple path. However, even the simplest example
of the cluster-like relationship structure shown on Figure 3
demonstrates the evident deficiencies of such representation.
At the matter of fact, the generalized path on this Figure is
formed by the { o ° o1, o ° o2, o ° o3, o ° o4 } family of simple
paths; and their representation with a flat table is turned out
to be unnormalized in the sense of the relational database
theory; and it causes the well-known troubles with
inconsistency, etc.

O
4

O
3

O
2

O
1

O

Figure 3. Cluster-like structure of relationships

The last example forces us to suggest the other method of
representation of complex navigational queries at the manner
that reflects the navigational nature of the queries more
suitable and carefully. By other words, each path that forms
the result of the query must maintain its path properties in the
low-level representation of the query result. We should keep
in mind that the representation holds the result specified by a
high-level set-oriented query expression; but further this
representation is accessed and manipulated with low-level
value-oriented means of the modern programming languages.
It is quite important for developing interface from a host
language to the database system.

We do not intend to describe such interface ad-hoc, but it is
necessary to introduce the basic data structures required for
the complex query result representation, and methods of
access.

Now the concept of secondary navigation is proposed. While
the primary navigation is intended for the aim of specifying
data at high-level manner, the secondary navigation is
required to manage access to the internal representation of
the query result. It can be noted the simple kind of secondary
navigation is applied implicitly at the relational technology as
the cursor technique.

From the implementation point of view, the definition of
query values provided at previous sections has a lack; it is
caused by its indetermination. Therefore the notion of simple
paths should be made more precise.

Let’s describe the rules for representation of values of
complex queries:

1. the value of each level is stored in a flat table that consists
of object names, their multiplicities and data of fields;

2. the current row is directed in each table with a pointer that
can be moved sequentially from one row to other;

3. the left and right neighbor objects are pointed for each
object stored in the table;

4. these pointers to neighbor objects can be moved through
left and right objects to look over all objects which are target
objects (right neighbors) or which are the source objects (left
neighbors) for the current object of any given level.

If the pointers to neighbors are stated automatically, the
current path will be stated in the representation. Moreover,
any movement of the pointer to current object or the pointer
to current neighbor in any level will form a new path in the
representation.

4. Contexts and context queries
Now let us describe the aspects of the implementation of the
query language proposed at previous sections. Our
investigation is based on the notion of contexts.

The context is a data structure, which holds the result set that
is formed by result of any level of a query with the pointed
current objects. In other words, the result set of any context
keeps the flat table of data. The contexts are managed by an
interpreter of queries. There can be a few contexts managed
by the interpreter, but only one may be the current.
Interpreter’s contexts form a stack, so each upper context
“remembers” its lower context.

Now let’s consider the procedure of execution of the query of
general case, i.e. T•L1•L2•… •LN. It is no matter, weather
the chain is extended one or not.

The calculation procedure starts from processing T level.
This level is evaluated as context-free; it means if there is any
current context holding any result set, than this context is
destroyed (dropped from the stack) and replaced with the
new context. The new context is to store in itself the result set
for objects of T level.

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 5

The other levels are calculated as context ones: each of them
requires the data from its previous context. Let’s assume the
current context holds the objects of j-l level of the chain, and
oi is the current objects in the context. Objects of the next
level are evaluated by the following way. All oi objects are
looked through, and the values for all oi•Lj expressions are
calculated and placed into the new result set of a new
context. After level evaluating this new context becomes the
current one. The sequence of j+1 steps described above
forms the direct step of query execution. The next part of the
execution is named as a reverse step, it will be discussed
later. After all levels of the chain are calculated, any context
laid on the stack can be accessed for fetching object data
consequently. Besides, the left and right neighbor objects are
set to form the whole path. In addition to looking through the
own objects stored in the own context’s result set, it is
possible to reset the pointers from one current neighbor
object to another.

There are some differences between calculations of partial
and total values. At first, while the total value is formed of
the set of objects only, therefore no need to keep all lower
contexts. But the multiplicities of objects must be calculated,
so grouping objects is involved. When calculating total
values of chains, all contexts must be kept; moreover,
forming paths requires storing identifiers of the left neighbor
object for each object; in other words, the object should
“remember” its left neighbors. At last, if an extended chain is
to be calculated, the contexts for the levels which does not
include the field list should not be accessible, but they cannot
be removed from the stack, because they are required for the
forming the parts of paths for the other levels. The Figure 4
shows the contexts generated for the query extended by the
lists of fields for second and forth levels.

When the common value is calculated, the reverse step of the
procedure must be processed. We should keep in mind the
direct step forms the unproductive paths also, which are the
values of any left subchains, but are not the values of the
whole chain. In other words, these paths are short ones, and
therefore the objects which form they must be removed from

result sets of all contexts starting with the upper context to
the lower. If an object from any context (except the last
context) does not have any right neighbors, it is removed
from the result set.

Context queries

The queries introduced in Section 2, are the global ones
because such queries identify database objects absolutely.
Neither the formal definition nor the real procedure does
require any information on objects identified by other
queries. But sometimes it can be useful to identify objects
that continue the paths calculated before. By other words,
database objects can be specified by relation with known-yet
objects. In order to provide such facility, we propose the
notion of context chains. The context chain is any right chain.
Let us assume C chain is the CL • CR composition of two
chains. If CL is calculated and its last level forms {ojkj} result
set, than CL chain is called the context chain which context is
generated by any oj object from the result set; the value of
this context chain is introduced as a value of ojkj•CR

expression.

The definition of the context chain notion does not require an
existence of any left subchain, but it involves the result set
from which objects the navigational paths are continued.
Besides, the type matching is intended for correctness of
query performing, but the description of type aspects
including type resolution during query execution is out of our
presentation caused by space limitation.

At the matter of fact, the calculation of the whole
T•L1•…•LN chain can be divided in N+1 steps. At first, T
chain is calculated. Then, the context chains for all Lj level
are calculated step-by-step. All objects that form the result
paths for the chain will be identified and stored in the stack
of contexts. But the objects, which lay on the unproductive
paths, will not be removed from the lower result sets because
reverse step of the procedure is not provided.

The most significant application of the context chains deals
with recursive chains and subqueries evaluation. A subquery
is the query that is called inside the body of any object
function. Some functions are applied to current objects of the
context, and the usage of context chains gets the possibility
to identify both the current object along and all objects on
incident paths.

5. The implementation
This section figures out the main features of the
implementation of the system that provides the possibilities
suggested above.

A simple prototype system, that realized some of introduced
concepts, has been implemented by the author. Now more
complete system is under implementation; we hope that
system will provide all of the facilities.

Our system is an interpreter of commands, which include:

… …… …… …

Dropped context

Kept but unaccessible

Case level context

Field values

Figure 4. The contexts for extended chain

Specification and Result Representation of Complex Navigational Queries for Object Databases6

• objects type definition commands;

• objects manipulation commands (adding, dropping
objects, etc);

• queries;

• the sources for function bodies and stored modules (i.e.
the unions of commands stored in the database and
retrieved from it for execution);

• commands for context management and fetching
information from their;

• other commands.

The architecture of the system is the following. The
interpreter is implemented at the top of relational system
ORACLE for Sun platform. All low-level operation for data
representation, storing and retrieving is performed by the
means of SQL language.

The most significant and interesting features of the
implementation are the implementation of query calculation
and the representation of the query result.

The query execution includes two basis functions.

Type resolution whose aim is to determine the type of
database objects which are to be retrieved from database.
The problem of type resolution is faced if all type names are
not specified in query source and therefore the type names
must be evaluated before data access. Such circumstances
can be taken place when untyped objects (which are
identified by their names only) or reverse relationships are
specified. The authors' investigations on this matter are
briefly described at [3] work. In general, the type resolution
problem is not trivia and requires additional researching.

 When object type are determined data are retrieved from
relational database by generating and executing the SQL
queries. This procedure is simple, so it is no need to describe
it.

The representation of query result is provided by the
following way. Each level of paths is stored in relational
table that consists of object names, object internal identifier,
values of specified fields, and the identifier of the objects
which is the left neighbor of given object. After complex
query execution each context from the stack of contexts can
be become as the current context and the current object in its
result set are pointed. In the other contexts the current objects
can be set to form the whole path by the different ways:
either automatically or by user with some commands.

Forming path and getting neighbor objects are performed by
relational queries which force the joins between neighbor
objects stored in the result sets.

6. Conclusion
In this paper we have not described some features of
suggested query language and data modal. At first, the
precise notation of object types is omitted due to space

limitation as well as data manipulation language. Besides, we
do not discuss the concepts of object functions, the interface
with host languages and the commands for manipulating
contexts. At last, we propose the concept of stored query
result sets, but any details of these concepts are out of our
current presentation.

Some of the omitted details were presented in the previous
works, and others require an additional investigation.
Authors hope, they will be described in future papers.

References
1. Zastavnoy D.A.. “High-level Declarative Query

Language for Object-Oriented Database”. In: “Advances
in Databases and Information Systems. St.Petersburg,
1997, V.2,pp. 26-28.

2. Bukatov A., Zastavnoy D.. “Programming Support
System for Supercomputer nCube based on Object-
Oriented DBMS” (in Russian). In: “Mathematics
Modeling and Information Technologies”. Kislovodsk.
1997.

3. Zastavnoy D.A. “A Concepts of Polymorphism for High-
Level Query Language for Object Databases” (in
Russian). In: “Computer Technologies for Engineering
and Management”. Taganrog.1997.

4. Bukatov A., Zastavnoy D.. “High-level Navigational
Language for Querying Complex Data Objects and its
Application to CASE Systems”. In: Pavol Navrat.
Haruki Veno (ed) “3th Joint Conference on Knowledge-
Based Software Engineering”. Pp. 103-107. (IOS Press,
Amsterdam. 1998)

5. Bertino B., Negri M., Pelagatti G., Sbattella L.. “Object-
Oriented Query Language: The notion and the Issues”.
IEEE Transaction on Knowledge and Data Engineering.
1992; 4.

6. Won Kim. A Model of Queries for Object Oriented
Databases. In Proceegings of VLDB. Amsterdam. 1989.

7. Barclay P.J., Kennedy J.B.. “A Conceptual Language for
Querying Object Oriented Data”. In Proceedings of
BNCOD-94.

8. Cattell R.G.G, Barry D.K. (ed) “The Object Database
Standart: ODMG 2.0”. Morgan Kaufmann publ. San
Francisco, 1997.

9. Stonebraker M., Kemnitz G.. “The Postgres Next-
Generation Database Management System”. ACM
Communications, 1991; 34:27-38.

