
Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 1

Developing, Simulating and Managing
Distributed COM Applications with XJ DOME

Andrei V. Borshchev, Alex E. Filippoff and Yuri G. Karpov
Experimental Object Technologies (XJ) & St.Petersburg Technical University, Russia

dome@xjtek.com http://www.xjtek.com

Abstract
XJ DOME is a set of tools and technologies for
those who wish to speed up development of
distributed COM applications and improve their
quality and manageability. DOME supports
several development phases (graphical modeling,
code generation, simulation and deployment), as
well as run-time (monitoring and management).
DOME is tuned to work with MS Visual C++.

1 Introduction
While distributed computing platforms such as CORBA
and DCOM are now used industry-wise, there still are
no corresponding high-level support tools. Most
commonly used development environments (e.g.
Microsoft Visual Studio) provide only low-level support
for distributed programming leaving a lot of routine
work to be done manually.

The main idea behind XJ DOME project is to let the
developer concentrate on application-specific design by
automating tasks common for most distributed COM
applications. XJ DOME enables the developer to:

• Rapidly create and launch distributed application
prototypes using visual design environment with
complete code generation

• Debug timing and synchronization and estimate
performance of a distributed application by
simulating it in virtual time on the developer's
machine

• Deploy the application components over the target
network

• Monitor the distributed application: collect and

display statistics, inspect threads and
synchronization objects, view logs, etc.

• Manage the distributed application via COM
interfaces using standard and custom controls

The main DOME components are Engine and
Application Viewer, see Figure 1. DOME Engine is
responsible for simulation and deployment, while
DOME Application Viewer enables the user to monitor
and manage the distributed application. Engine and
Viewer communicate with the application using pure
COM.

Actually, DOME does not care how exactly was the
application developed as long as its components support
IDomeObject interface. However, DOME offers
specific support for MS Visual C++. This includes
DOME Application Editor and a set of DOME Wizards.
Those who want to rapidly set up COM project and
perform first development cycles with minimal efforts
would use graphical DOME Application Editor,
whereas advanced users of MS Visual C++ (especially
those who are in the middle of the development) can use
DOME Wizards.

2 DOME Application Editor
For rapid prototyping of distributed COM applications
XJ DOME offers Application Editor, see Figure 2. It
includes graphical COM Object Diagram and
Statecharts editors and form-based COM Interface
Designer. DOME Application Editor generates the
complete application code including IDL, C++,
resources, and MS Visual C++ project. It builds the
application components using MS Visual C++
command-line compiler and starts DOME Engine and
Application Viewer. DOME Application Editor
drastically saves developer's time on the early design
stages. Later on, when "COM skeleton" of the
application becomes more stable, the developer can
continue with MS Visual C++ environment using built-
in DOME Wizards.

3 Wizards for MS Visual C++
DOME can be used with new projects as well as with
the legacy software. In the latter case DOME
functionality can be added to the application gradually.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the CSIT copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Institute for Contemporary Education
JMSUICE. To copy otherwise, or to republish, requires a fee and/or
special permission from the JMSUICE.

Proceedings of the Workshop on Computer Science
and Information Technologies CSIT’99
Moscow, Russia, 1999

Developing, Simulating and Managing Distributed COM Applications with XJ DOME2

By following a set of simple rules one can easily tune
COM objects under development to use DOME
simulation, deployment, visualization and management
facilities. To automate this work DOME adds to MS
Visual C++ development environment a set of wizards
covering all related tasks:

• DOME App Wizard

• Add DOME Object

• Add Child Object

• Add COM pointer

• Add DOME Thread

• Add DOME Statistics

• Add DOME Log

4 Simulation
Simulation is used for preliminary analysis of the
application correctness and estimation of its
performance. In the simulation mode the most detailed
information on threads and synchronization objects is
available online in DOME Application Viewer. The
user can run the application step-by-step, stop upon a
certain condition, e.g. when enough statistics is
collected, etc. Using automation the developer can
program DOME to run multiple simulation sessions to

find optimal parameter values or to test the application
scalability. And all that is performed on a single
developer's machine.

DOME simulates the application not in real, but in
virtual time, thus making arbitrary complex experiments
possible on a single workstation. For example, if you
provide the deployment information and characterize
the target network, the simulated DCOM calls will be
correspondingly delayed. Thus, DOME will advise you
on the performance of the distributed application before
it is actually deployed.

Simulation is supported by DOME Engine that
implements IDomeEngineSite interface. The
application objects developed according to DOME
technology invoke the functions creating new objects,
threads, synchronization objects, delaying thread
execution, waiting for events, etc. through
IDomeEngineSite. In the normal execution mode
such call is immediately passed to the local operating
system (in fact, the call does not even leave the local
machine, as the engine is represented there by small
DOME Engine Proxy object, see Figure 4). In the
simulation mode, however, the engine takes care of
thread scheduling, synchronization and time.

Simulation
• Virtual time
• Step-by-step
• Optimization
Deployment
• Secure DLL transfer
• Server registration
• Object creation

Visualization
• Objects
• Threads
• SyncObjects
• Statistics
• Logs
• Inspect
Management
• IDispatch control
• Custom controls

Application
component

DOME
Application

Viewer

IDomeObject

DOME
Engine

IDomeEngine

IDomeEngineSite

DOME Wizards
• AppWizard
• COM Object
• Child Object
• Pointer
• Thread
• Statistics
• Log

• Visual modeling
• Code generation DOME Application

Editor

MS Visual C++

MS Visual C++

Figure 1 XJ DOME components and their functionality

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 3

Figure 2 XJ DOME Application Editor

Figure 3 XJ DOME Application Viewer

Developing, Simulating and Managing Distributed COM Applications with XJ DOME4

5 Deployment
DOME automates deployment of the application
components. Suppose the application object A running
on machine Zuga wants to create object B. It simply
calls DOME function CreateObject which returns
the pointer to IUnknown interface of B. All other work
including locating host for B, transferring the
corresponding DLL file, registering it on the target
machine and creating the object instance is done by
DOME Engine as shown in Figure 4. The deployment
table may be formed either directly from the user
instructions or on the basis of a given algorithm, e.g.
load balancing.

DOME Node runs on each machine where you wish to
deploy the application components. It is responsible for
uploading the component code and registering it locally.
As long as the application can run across a non-secure
network, e.g. the Internet, DOME uses DCOM security.
A list of users that may upload, register and run DOME
components can be specified for DOME Nodes.

6 Visualization
The user can monitor the running application with
DOME Application Viewer, see Figure 3. The viewer
retrieves the information via IDomeObject interfaces

implemented by DOME-compatible application
components and displays the global picture of the
application, including:

• Application objects and their hierarchy

• Threads

• Synchronization objects

• Statistics

• Logs

• Inspection views

• IDispatch interfaces of objects

The particularity of the displayed information depends
on the execution mode. Namely, in the simulation mode
the user can watch the current states of the
synchronization objects and threads, and wait queues,
whereas in the normal mode these details are not
available.

7 Management
The user can manage COM application with DOME
Application Viewer. Before the application starts the
user chooses the execution mode (simulation or
normal), root objects and gives deployment instructions.

IDomeEngineProxy

DOME Engine
Proxy

IDomeEngineSite

CreateObject

IDomeObject
CreateObject

IDomeEngineSite

DOME Engine

HD

Registry

IDomeEngineProxy

DOME Engine
Proxy

CreateInstance

IDomeEngineSite

IDomeObject HD

Registry

CreateObject

CreateObject

UploadComponent

Host: Zuga Host: Zhirik

A B

A.B Zhirik

Object Host Name

… …

1

2

3

4

5

6

7

89

10

11

B.DLL

Deployment
Table

DOME Node

IDomeNode

PutFile

DOME Node

Figure 4 XJ DOME deployment protocol

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 5

When the application is running, commands available in
the viewer depend on the execution mode. In simulation
mode the user has full control over the application
execution. Since DOME Engine manages time and
synchronization, the user can run the application step-
by-step, stop, watch the activity of the selected object,
etc. In the normal execution mode time and
synchronization are managed by the operating system.

In any mode the user can change the properties of any
application object with DOME IDispatch Browser.
Moreover, the user can create custom controls using MS
Forms technology and build them into DOME objects.
These controls will be displayed in DOME Application
Viewer that acts as the application management
console.

8 Future work
We consider DOME as a framework technology that
can be used as a basis for building distributed
applications with predictable quality of service. At the
moment we are working in the three directions:

• Incorporating generic model-based management
facilities into DOME objects [3]

• Implementing general-purpose distributed
algorithms in DOME objects, such as distributed
snapshot, distributed termination, distributed
deadlock detection

• Developing DOME object-compatible simulation
models of communication media (networks and
protocols) for better prediction of the application
performance

References
1. D. Krieger and R.M. Adler. The Emergence of

Distributed Component Platforms. IEEE Computer,
March 1998, pp. 43-53.

2. Andrei V. Borshchev, Yuri G. Karpov and Victor V.
Roudakov. Systems Modeling, Simulation and Analysis
Using COVERS Active Objects. Proceedings of the IEEE
International Conference and Workshop on Engineering
of Computer Based Systems, March 24-28, Monterey,
California, 1997.

3. Maxim Aleksandrov and Vlad Voinov. Designing and
Implementing QoS Management of the Web. Proceedings
of IBM CASCON’98.

