
Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 1

Emulation of Complex Computing Systems and the Software Transfer-
ring Process

A. Sourkov V. Urusov
E.P.A. Ltd. E.P.A. Ltd.

St.-Peterburg, Russia St.-Peterburg, Russia
 Shura@comcit.spb.ru kondor@mail.marinform.ru

Abstract
The present article describes an intelligent (program-
mable) hardware emulation and some questions con-
cerned with transferring data and executable code from
such systems. We will pay attention only to those com-
puter complexes which peripherals can fulfil their own
special instructions and non simplest actions, without
any request to central processing unit (CPU) of these
computer complexes. Right now IBM/360/370 is a
classical example of such complex. Its I/O subsystems
have own embedded programming language (named as
channel programming language) and its own CPU and
address translation independent path to memory. This
way eliminates the information streams bottleneck
which is known as system bus and increases the com-
puter complex productivity. These peripherals can
make hardware search with a pattern (hard disc sub-
system), some transaction with users(terminal subsys-
tem) e.t.c. Unfortunately, the modern computer industry
tends to increasing throughput of a single unit - CPU at
the expense of oversimplification the others. The bright
example is ‘winmodem’ - the unit which cannot put a
byte to phone wire without dedicated CPU service sub-
routine.

1. Introduction
There are many cross programs which are emulating one
CPU using another. It is simple. Our specific features (which
has not developed at our opinion yet) are peripheral devices
emulation which use input-output simultaneous to main cal-
culating process, multiport memory subsystem and a

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the CSIT copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Institute for Contemporary Education JMSUICE. To copy otherwise, or to
republish, requires a fee and/or special permission from the JMSUICE.

Proceedings of the Workshop on Computer Science and
Information Technologies CSIT’99
Moscow, Russia, 1999

complex emulation of such systems (CPU+ peripherals+
memory). We have our own software product - the IBM/360
emulator which was tested under some mainframe operation
systems and applications on some hardware platforms under
some modern operation systems.

The emulation technology gave us some nonobvious meth-
ods. We have more complex, detailed and customised tracing
technology now. We can adjust input-output flow on our
own. We can see data within instruction fulfilling (what may
be rather convenient and important in the case of chain or
block instruction). We can make traps in multiprocessor con-
figurations e.t.c.

In practice we can in a great possibility catch date requests
which follows us to 2000year problem solution. IP technol-
ogy allows us to make a remote mainframe system console.
These consoles can be gathered and a single operator can
manage some several distant mainframes. This case make
cheaper the mainframe maintenance. Also we can place us-
ers’ terminals anywhere.

The practice aim is data transfer from naitive IBM/360 for-
mat to modern personal computer (or RISC) format and a
support of some transfer time critical industry and military
processes still using mainframes and cannot be shut down to
update its software.

There are four ways of software updating to a new platform:
reengeneering, rewriting, recompiling sources and emulation
old environment on a modern one.

Our technology (environment emulation) helps enterprises
which haven’t sources of their working programs, its authors
and have dim algorithmic understanding of these process.
This way also have a set of inportant features:

• the task is transferred as ‘black box’, such approach
eliminates security problems and necessity of algorithms in-
vestigations,

• the transferring executing process will have no changes
which makes old licenses and sertifications still valid (in fact
it is equivalent mainframe CPU changing),

• though emuladed system works slower it is compensated
adequate modern CPU grouth,

Emulation of Complex Computing Systems and the Software Transferring Process2

• transfered software can be serviced by the same stuff after
a little modern system depended training,

• the data can be shared and manipulated using all modern
technologies.

The other item to mention is an environment in whitch trans-
ferring software works. The customer’s interes lies only in
applications, so we can make some additional optimisations.
Some interesting discoveries are in the article.

So the emulation process has its own special advantages,
which are not so sparkling but rather important. By the way,
this method can work where the others cannot.

An unprecedently rapid growth and development of computer
industry (now computer communication also) is its main
feature now. The well known Moors theorem tells that the
density of microelectronics chips (and therefore the com-
plexity of built using it equipment) makes twice higher every
18 months. This growth rate leads to the fact that enterprises
of another industry branches cannot stand such rush devel-
opment in organization and/or financial aspects and fall be-
hind technology. The longer gap the more difficult to com-
municate with modern computerized society. There is a level
of this lagging when connection becames impossible. The
data on such complexes became unreachable and algorithms
are lost.

For example, there were 6-bit in a byte computers (ICL19xx,
in Soviet economic block they was known as ODRA ™). Up
to date still exists several floating point formats. IEEE issued
the floating point standard but many manufacturers still use
its own.

Another special group of information consumers are govern-
ment structures. This kind of consumers also requires special
stuff with security admission, certification procedures, fault
tolerance and so on. Meeting these requirements lasts for
months and when all these problems are settled these com-
plexes find themselves obsolete. The situation is made more
difficult with the process nonstop requirement.

Another feature of the rush development is service time de-
creasing. As a new computer generation comes hardware and
system software support of elder complexes decays for a few
months. This situation follows to the fact that every trouble
may be fatal. In the case of hardware fault the data may be
lost and/or the production may be stopped or disorganized in
any range. Eliminating of software support follows to a
situation when in some time nobody understand how the
computer complex works. So changing of data flow becomes
impossible. This leads to the fact that owners of such com-
plexes cannot adjust its working to any world or technology
changing, the production cannot develop and be fully man-
aged so the decay of these enterprises becomes a question of
time.

The fact is the information which was gathered and stored in
such complexes is worth to try to use it. In the case of gov-

ernment and/or military information access to it sometimes
becomes a state worth question.

We have developed some conceptual approaches to solutions
of such kind problems and made appropriate software. Later
we shall discuss about the most often happened problem -
IBM/360 heritage and how to use and execute it on a modern
computer (Intel 80x86, MIPS, Alpha, PPc and so on).

Here we shall discribe the computer system emulation with
programmable peripherals (i.e. devices which can fulfil its
own special instructions and make some complex operations
without direct CPU intervention.

Now we assume IBM/360 computing complex with channel
comands interpretator unit, hardware disk search with a pat-
tern e.t.c. Modern peripherals are more simple. Now we have
a great advantage in CPU power and a corresponding simpli-
fication in other hardware permanent demanding CPU atten-
tion. As an example we note ‘winmodem’ - the device which
cannot send a byte itself - all subactions are to be prepared
with CPU.

Emulating old systems with modern hardware we couldn’t
avoid this this problem. We had to go by general way in-
creasing peripheral devices’ intelligency with CPU. But we
arranged any tricks to preserve native stucture and behavior
of mainframe peripherals.

The main important mainframe feature input-output working
simultaneousely with computing really doesn’t work on a
host computer because its architecture doesn’t support it. So
emulated application using this kind of input-outpwu works
slow. But it works. Anothe problem is a real-time mainframe
timer. It is a general problem of avery cross system. We
didn’t investigate this one because really high accuracy of its
emulation was not so nessessary yet.

Some pecularities have memoty subsystem. The simpliest
mainframe memory unit is dual port unit. There can be two
independent memory request at once. During program emu-
lation on a modern host computer this effect is not happen. In
this case all processes goes sequentually and an ordinary
memory works. Also we can use different page and segment
descriptors for dufferent emulated processor units, direct
adressess for input-output flow and key memory security.

In our approach we are not limited with hardware size of
memory page. Therefore we have no problems of different
page sizes of different CPU models.

The emulation technology gave us a set of develops and ex-
tensions. We can debug in a greater details and have more
conveniences which we can adjust to ouselves. For example,
we can debug chain and block data instructions with overlap-
ping areas, we can manage input-output flow and see the data
changing within instruction executing. Also we can make
address and data traps, trace multiprocessor request and so
on. When we search, catch date request and trace following
instruction we have a chance to solve 2000year problem in

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 3

the traced application. Now we are creating more specialised
tool for this task.

Embedded IP technology gave us oppotunity of creating re-
mote mainframe console. These consoles can be gathered on
a single personal computer and one operator can manage
several distant mainframes. This way makes mainframe
maintenance cheaper. Also we can place user terminal any-
where. In this way we use standart IP utility telnet 3270
whitch offers routable worldwide packet interface. This util-
ity has every IP supporinng operation system so user terminal
may be arranged under a lot of operation systems including
MAC or Amiga for instance. Moreover, they can work as
mainframe user terminal for several emulated mainframes.

Real worth aim of this activity is data transfer form IBM/360
format and storage into modern format and carrieers. Also
importance has some time critical military and/or industry
application support. In these cases required some licenses
and sertificates for software. Really now there are not soft-
ware engeneers who can stand all these processes.

2. The premises of the task
Transfer of exising programms into open systems is a ques-
tion of vital importance for many organisations developing
and using information systems of any kind.

The Gartner Group and International Data Corporation have
questioned some computing centres using IBM mainframes.
This questioning told that more than 70% were going to
transfer their programms and data into open (modern) sys-
tems within several next years.

There are four possible ways: reengeneering, rewriting, re-
compilling sources and emulation old environment on a
modern one.

Reengeneering includes forming a new task, methods, which
follows to finding new program models and algorithms fully
using modern techniks advantaches.

Rewritting includes adoptation old sorces from old data
structures to new using known algorithms.

Recompiling includes use old sources with new program
tools to perform executable code and acceptable data struc-
tures.

And the emulation old environment on a new platform.

Let’s see first three ways in details.

Reengineering seems as the only possible solution for some
programs. Of corse it is expensive, long and complex work.
It demands task produsers, high skilled application special-
ists, algorithmic creators, programmers, system programmers
an so on. In some cases all or a part of the staff are to have
special permissions or a something like it. This way is the
most reliable and preferable but it is the longest and most
consuming way. This way produces a new product. Therefore
it in military or similar case has to pass sertification exper-
tise. It still consumes a lot of time.

Rewritting and recompiling are seemed as fast and cheap
solution in fields where changes are not so large. But there
are some advanteges and disadvantaged.

One can consider as advantage following:

• The result is a native build programm, compiled in native
codes and using native operation system requests.

• Quality of workers. This way doesn’t require high quali-
fied expensive specialists. All work can be checked under
test data what makes the process faster.

• This technology can be applayed to the tasks which have
sources but have no algorithmic calculations.

And about disdvantages:

• Architecture features which were used in older solution
still force on new product and in some cases will determine
its working principles. For example, a program working with
index files REGIONAL(X) type in PL/1 language will leak
its productivity after recompilling into UNIX or WINDOWS
-like operation systems because this type of index files as-
sumes hardware seek with a pattern and was optimised for
using this hardware capability. Program recompiling or cheap
(low qualified patch) will greatly decrease program effe-
civency. UNIX version of REGIONAL(x) under plain
POSSIX interface is extremely uneffective compared with
mainframe analog.

• Low quality engineer can miss some specific stucture
updates or something else. IBM/360 has following basic data
types:

 32 and 64 bit integer,

 floating point data with 24, 56 and 112 bit mantissa,

 packed and unpacked decimal data.

Under automatic recompilation or formal rewritting the data
format really will be changed leading in incompatibilities
between data structures and execution code. All float point
will be in general transferred into 64 bit DOUBLE
PRESISION REALs. All old floating point arrays become
ivalid.

This situation requires rewriting of all working structures
before translator runs. After this stage correction will require
structure or record pointers and so on. At final most conver-
tors forget the fact that IBM/360 has hidden floating bit in
mantissa in FPU so the coreect transferred data produce cor-
rupted result.

The same situation is with fixed point data. As a result we
can see that program algorithms cannot work and the situa-
tion require manual data transfering. At practice we have
manual work under about 30% data and sources and it con-
sumes more than 90% of total time.

We suggest to discuss the fourth way - the emulation tech-
nology and related processes.

Emulation of Complex Computing Systems and the Software Transferring Process4

This tecnology has following pecularities:

• The task transfer does not require any programmer at all,
there also may be no profile specialist.

• The task is transferred as ‘black box’ without any inter-
vension in its working process. In fact it is equal mainframe
CPU changing for most tasks.

• The productivity of computing complex is high level de-
creased but it is corresponded with high level increased mod-
ern host CPU productivity.

• The emulated applications can be serviced by the same
old stuff. New host system training in this case is simple and
may be done for some hours in one of many modern system
software training centres.

• Data may be stored on shared disk in known format what
makes possible to get access to them using modern computer
facilities and appropriate drivers or convertors.

3. IBM/360 to IBM PC emulator as example
We have developed the software for full emulating behavior
IBM/360 mainframe on a Intel 80x86 architecture (the
emulator later). The emulator also makes emulation of main-
frame hardware and this thing allows to run almost all
IBM/360 designed software.

The 4.12.0 version on Dec. 1997 represents following:

• IBM/360 CPU in full range,

• Disk drives 29Mb, 100Mb, 200Mb,

• Types,

• Printer and reader,

• Display 7920,

• System console.

Realisation:

• Disks and types are emulated as files with internal struc-
ture nesessary for its working. We have there tape mark
emulation for types, own address and other for disks and so
on.

• Displays are emulated on PC monitor

• Printer and reader are represented with DOS files or as
task separated files in a DOS folders set. This folders may be
network shared folders.

CPU
UNIT

RAM
UNIT

Group channel
controller

CPU Interpretator RAM area structure

Channel commands interpretator

Plotter

Disk Array

Console

Device drivers

Tape
unit

Figure 1. Block-chart of the emulator.

The former raw product later was improved with structure
optimisation. It is clear that tasks are run and data are stored
not with a kind of magic. Application have a set of program
requests derived from local operation system.

We decided that not wise to emulate the whole operation
system and applications. Why have we to make emulation of
an application request to a operation system, then make
emulation of operation system redirection to hardware, hard-
ware responces, preparing this responce with operation sys-
tem and final answer to the application? It is clear that these
requests are mostly simple file or communication requests.
Usual requests such as find file, open file, read or write data
to file, close file and so on can be translated to similar re-
quests of the host operation system. It has redused a lot of
tine and computer resources.

System interface (in this time too) is designed to brimg
maximum flexibility. So all transaction were made using
system calls, which were traced. These call entries , functions
and protocols were investigated and redirectors of some kind
requests were placed.

The main problem in this way is the problem of a large
varaety of different IBM/360 operation systems. So we didn’t
include our redirectors in main code.

Now based on a growing practice we desided to try to play
with SVM operation environment. In this field we have
maximum transferring tasks.

SVM basic idea was to create a set of vitual mainframes on a
real one. This set was managed with Monitor of Virtual Ma-
chines (MVM). User in this virtual mainframe feels himself
as in a real one. Virtual mainframe fulfils all user mode ex-
ecutable code as a real one. But separate users had separate
(virtual) disks, memory e.t.c. SVM user could make special
SVM request to take additional capabilities.

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 5

All system calls were serviced with MVM. MVM also trans-
lated user virtual input-output channel programs into real
channel program, arranged inter- virtual mchines communi-
cations.

SVM applications were made under such program environ-
ment It was not nesessary to MVM support longer.

We tried to reanimate SVM user program environment under
the emulator. On this way we found that these MVM requests
were made using separate single supervisor protected really
useless IBM/360 CPU instruction. We added only MVM
request emulating unit based on single instruction interpre-
tator.

Another large optimisation step was IP protocol realisation.
IBM in its operation realisation made IP support over two its
own incapsulated protokols. Nobody now use these old IBM
protocols. So we cut them without any harm.

Another step in our work was hardware optimisation rou-
tines. The most slow part of disk input-output is the hard disk
head seeking. So was in mainframe age. Understanding this
fact developers of many operation systems added optimisa-
tion routines in their systems. These optimisation routines in
general sort hard disk task queue to optimise head walking.
We decided not to cut this code. But if all host tasks includ-
ing emulated hard disks were placed on a single disk our de-
cision became useless. So we went furher, we tried to place
maiframe disk on a separate low capasity hard disk drive.
Well, old technologies still works. We caught a little onput-
output flow increasing.

Now the emulator sources are rewritten to get full 32 bit ver-
sion under C language. This way allowes us to apply this
software on a lot of platforms and operation systems. Com-
paring results obtained on different platforms we’ll get new
results and new capabilities. Now we are collecting statistical
data and improving emulation process. We have no enough
data right now but it is to be later.

The data and software transferring process

One of main problem here is a hardware one. There are few
opportunities and they don’t seem very helpful. For example
general communication unit with sequential interface (like
RS232) had 300 baud speed (less than 40 bytes per second).
It is considered now that more uesful way lies throug pro-
ducing special controllers. There are a lot of mainframe ter-
minal connection controllers. It can be placed into an ISA
slot of IBM PC and it has BNC connector to be placed within
terminal line. There are some disadvantages:

• the real throughput is still low,

• nessessity of special protocols and IBM/360 utilities to
send binary data through terminal line (alphabetic),

• system digging if we want to have any system informa-
tion, and permanent adjusting these tools due to differences
of many versions and types of operation systems.

• placing special hardware in customer’s area what brings
security time and some other problems.

The more natural way we thought was using system tools and
native IBM/360 carriers. This way minimises our extra work.
We decided to use types. Now we don’t neet of making old
IBM dependent tools. Every system had nesessary tools be-
cause type in mainframe is a standart backup tool and every
operation system had appropriate backup tools which we can
use. Specialised PC hardvare and its driver is enevitable, so
we adjust type drive to SCSI interface and this drive settled
all problems. This adjustment was easier because electrical
ISA parameters are more complex than SCSI.

As a criteria of successful data and software transfer we
chose identity of test results obtained on transferred executa-
ble code under the emulator with transferred data (real or
test) with the same code and data set on mainframe. For
greater reliability we fulfil some runs on a different data sets
and asked a customer to make extremely hard set (with larger
swapping, higher input-output activity, higher floating point
presision and so on).

On missing we trace the emulated application. It is cleaqr
that troubles can be only in input-output subsystem. We
check all mainframe hardware request for intelligence. After
detectin suspicious ones we make further investigation, put
some questions to customer’s hardware engeneers and creat-
ing cure for that problem. At the end we made special solu-
tion.

4. Afterwords
We still haven’t tried emulator under multimainframe opera-
tion systems. But it seems possible to realise every CPU
module as a separate thred on power RISC computer.

On the way we will solve the common emulated memory
problem, make pefix memory mapping, do interprocessors
requests e.t.c. The way have just started but it seems inter-
esting. We can emulate separate CPU on separate hardware
solution. In this case all synchronising are on emulated mul-
tiprocessor operation system expence. But the result is un-
seen so it is attractive. It is clear that real time tasks are still
beyond our activity. But we hope that increasing productivity
of modern processors one day makes this kind of tasks possi-
ble. Another future way of our technology is transaction
computer.

Another our goal is preserve made algorithms. In past in
computers lack programs were better. Now one is waiting
new faster CPU or larger memory generation.

