
Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 199

Database Transformation from Relational to Object-Oriented
Database and Corresponding Query Translation1

Predrag Stanisic
Faculty of Computing Mathematics and Cybernetics

Moscow State University
Moscow, Russia

predrags@cs.msu.su

Abstract
The problem of database transformation from relational
to object-oriented database occurs on using
heterogeneous databases and when moving from a
relational to an object-oriented database management
system. The process of database transformation from
one model to another can be divided into two phases:
schema transformation from one model to another and
data migration in accordance with schema
transformation. Converting applications that work with
a relational database into applications that work with an
object-oriented database, the query translation problem
occurs. In this paper we describe the main ideas of
algorithms for implementation of all three phases, that
enables automatization of the conversion processes.

1. Introduction
The necessity of conversion of an existing relational database
into object-oriented one arises as a consequence of the
appearance of generation of database management systems
based on object-oriented model. The transformation problem
also exists in heterogeneous systems, that contain various
types of database management systems.

In this paper, the standard relational model is accepted and as
an object-oriented model, we accept the core object-oriented
model ([7]). The core model contains all basic object-
oriented concepts. Many existing object-oriented data models
expand the core model by adding some variations to concrete

interpretations of core concepts. We accept the language
shortly described in chapter 3 (see [5]) as the object-oriented
query language because it well enough uses the path
expression concept, which is an important advantage of the
object-oriented model. In this paper the relational SQL-
queries without path expressions are being transformed into
object-oriented queries, which contain path expressions.

The paper is organized as follows. After introduction, in
chapter 2, the process of schema transformation is described.
The chapter 3 describes the process of data migration, and
chapter 4 the process of translation of relational SQL-
queries into equivalent object-oriented queries. At the end we
give a short conclusion. In this paper we describe some of the
main ideas of methods and illustrate them by the simple
examples; all these methods are described in detail in
[8,9,10,11].

2. Schema transformation
Schema transformation is a set of rules, which map concepts,
existing in data model M1, into the concepts of data model
M2 ([1]). For our task of transformation of a relational
database schema into the object-oriented one, first of all we
have to identify those concepts of object-oriented data
model, which we want to obtain from relational database.
Object-oriented data model describes not only the structure
(static aspect), but the behavior (dynamical aspect) of objects
from the real world, also. That means that object-oriented
data model has, in this sense, better modeling abilities than
relational data model. In paper [9] we describe an algorithm
for obtaining the static aspect of object-oriented data model
from relational schema, i.e. we are interested in the following
object-oriented concepts: (a) object, (b) class, (c) inheritance
and (d) references (complex attributes).

2.1. Description of the schema transformation
procedure
For the transformation of relational database schema into
object-oriented one, it is necessary to have information about
foreign and candidate keys. In this paper we use the
definition of candidate keys which point out not only on the

1 This research is supported by Russian Foundation for Basic
Research, grant ¹ 9607-89110

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the CSIT copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Institute for Contemporary Education JMSUICE. To copy otherwise, or to
republish, requires a fee and/or special permission from the JMSUICE.

Proceedings of the Workshop on Computer Science and
Information Technologies CSIT’99
Moscow, Russia, 1999

Database Transformation from Relational to Object-Oriented Database and Corresponding Query Translation200

relation’s primary key, but also on its arbitrary candidate key
([2]).

In our algorithm, relations are being mapped into classes and
tuples from relations are being mapped into objects, which
are instances of classes. Relationships between classes, i.e.
inheritance and referencing, we identify by using foreign and
candidate keys in the corresponding relations and using
relationships between those keys. Relations can be directly
mapped into classes but the semantics of the relational
database will be lost. The goal of the paper [9] is to construct
an algorithm that works automatically, i.e. that analyses
relational database semantics and transforms it into object-
oriented one, completely without any help from the user.

At the beginning, for each relation in database, a class with
the same name has to be defined, containing all attributes
from relation. In transformation process of a relational
database schema to object-oriented one, some attributes, in
this way defined classes, have to be removed and some of
them have to be replaced with some other attributes.
Information about that, which attributes are removed and
which attributes are replaced with some other attributes, is
necessary for the next phases of transformation of relational
database into object-oriented one. That information has to be
saved during schema transformation process ([9]).

Paper [9] describes seven characteristic cases of mutual
relationship between foreign and candidate keys, which occur
in schema transformation. They are described in an order in
which they are being processed in the schema transformation
algorithm. The established order of case processing resolves
a large number of conflicts, which can occur. The order of
processing of the cases is changed only in few situations.
From these seven cases of mutual relationship of foreign and
candidate keys, five cases are known in the literature ([3]),
and two of them are proposed by author (see [9], 2.1.4 and
2.1.5). Differing from [3], where only an informal
description is given, in [9] we analyze all cases in detail. In
[9] we also give an analysis of conflicts that can occur, and
the resolving procedures for each conflict are also described.
These cases cover all candidate and foreign keys in relations
of the relational database. Case 3 deals with candidate keys,
which are, at the same time, foreign keys. Case 6 deals with
candidate keys, which contain foreign keys, and Case 7 deals
with all remaining foreign keys. Case 2 deals with relations,
which have identical set of candidate keys. Cases 4 and 5
deal with some special cases (foreign key pointing on the
same relation, to which the key belongs (Case 4), and two or
more foreign keys which belong to one relation and which
point on the another relation (Case 5)). Case 1 illustrates the
use of internal data semantics.

It is necessary to make an additional remark for the Case 1.
There are many different ways to make an internal analysis of
data and method, described in [4,9], is only one of them. This
case is used because it illustrates the possibilities of
preliminary changes in relational database schema in such a
way, that it contains more complete information about

database semantics. The goal of this is to obtain an object-
oriented database, which will better correspond to the initial
relational database semantics. The following three examples
illustrate some aspects of the process of schema
transformation. In all of them, underlined attributes indicate
candidate keys.

Example 1

Let be given the following relations: student(id, name) and
grad_student(gsid, thesis). The domain of id and gsid
attributes is integer, and the domain of the other attributes is
string. In relation grad_student, attribute gsid is a foreign
key, which points on candidate key id in relation student.
Transformed object-oriented schema is:

 class student class grad_student
 id :integer; inherits student;
 name :string; thesis :string;
 end; end;

In this example the inheritance relationship between two
classes is being created. In such relationship, to each instance
from subclass corresponds one instance from its superclass.
These two instances have to be connected. Because of that,
we assume that subclass contains one (implicit) attribute,
whose name is superclass_name-OID for each one of its
direct superclasses. Hence, domain of that attribute is the set
of object identificators (OIDs) of instances of class
superclass_name. For example, class grad_student contains
attribute student-OID. This situation is being processed in
Case 3 ([9]).

Example 2

Let be given the following three relations:

 author(author#, name),
book(book#, publisher) and
author_book(authorNo,bookNo, date).

The domain of attributes author#, authorNo, book# and
bookNo is integer, the domain of attributes name and
publisher is string and the domain of attribute date is
datetime. Attributes authorNo and bookNo are foreign keys
from relation author_book which point out on candidate keys
author# and book# of relations author and book,
respectively. Transformed schema is:

 class author class book
 author# : integer book# : integer;
 name : string; publisher : string;
 end; end;

 class author_book
 author : ref author;
 book : ref book;
 date : datetime;
 end;

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 201

Class author_book is created from relation author_book
whose candidate key contains foreign keys, which point out
on candidate keys in relations author and book. The
attributes of the foreign keys are being transformed into
references (complex attributes) which, in essence, are object
identificators of instances of classes, which are created from
relations on which those foreign keys were pointing. This
case is examined in Case 6 of schema transformation process
([9]).

Example 3

Let be given relations office(office#, building) and
employee(name, adress, office_no). The domain of attributes
office# and office_no is integer, the domain of attributes
name, adress and building is string. Atributte office_no is a
foreign key from relation employee to relation office. The
transformed schema is:

 class employee class office
 name :string; office# :integer;
 address :string; building :string;
 emp_office: ref office; end;
 end;

The attributes of a foreign key, which is not contained in any
candidate key, are being transformed into a reference
(complex attribute) which is the object identificator of
instances of the class, created from relation on which that
foreign key was pointing to. This case is examined in Case 7
of schema transformation process ([9]).

3. Data migration in accordance with schema
transformation
In the process of schema transformation, the relations are
being mapped to classes. Tuples from those relations have to
be mapped into objects, which are instances of corresponding
classes. Tuples from some relations can be directly mapped
into objects, which are instances of corresponding classes,
but with some relations, this can not be done. The problem is
that attributes of classes, which are created in the process of
schema transformation of a relational database into an object-
oriented database, can have domains, which can be different
from domains in relational schema. This happens with
attributes, that are object identificators of instances of the
classes. By those attributes, as it was mentioned before,
object-oriented concepts of inheritance and referencing
(complex attributes) are being represented. In paper [10] we
describe two algorithms for solution of data migration
problem. Here we describe their main ideas.

3.1 The first data migration algorithm
This algorithm, in contrast to the second one (3.2), is based
on the assumption that classes, in the object-oriented schema,
contain exactly those attributes that were described in schema
transformation process, i.e. there is no additional attributes
that contain redundant information. This way, object-oriented
schema is fully equivalent to initial relational database
schema. This fact is a problem during data migration,

because, in some situations, there is no possibility to uniquely
identify the needed class instance.

We can notice in example 1 that instances of class
grad_student can not be created before instances of the class
student are created. The reason is that a unique candidate key
gsid of the grad_student relation is not contained in the
corresponding class grad_student and, because of that, we
are not able to uniquely identify the wanted instance of this
class if, for example, it is needed to change the value of
thesis attribute. In example 2 we can also notice that the
instances of the author_book class can not be created before
instances of classes author and book are created. This is a
direct consequence of the fact that candidate key (authorNo,
bookNo, date) of relation author_book, contains attributes
authorNo and bookNo, which are foreign keys pointing out
on relations author and book and from which complex
attributes author and book in class author_book are being
created. On the other hand, in example 3 we can notice that
instances of class employee can be created before instances
of class office are created. This is a direct consequence of the
fact that a single foreign key office_no in relation employee is
not contained in any of candidate keys of that relation.
Instances of classes employee can temporarily contain null
values on attribute emp_office and that values can be updated
later, i.e. instances can be later connected with the instances
of class office.

3.1.1. Description of the first data migration
algorithm
These examples show that it is not possible to construct
instances of classes in arbitrary order. Instances can
sometimes be constructed without all attributes, i.e. with null
values on some of them. Values of those attributes can be
updated later, i.e. when instances of classes, to which they
refer, are constructed. For later update of class instances, we
must have a possibility to uniquely identify an instance.
Because of that, there should be present all attributes of that
class, which are created from at least one candidate key of
relation, from which that class is created. Only then, with
corresponding object-oriented query, we have the possibility
to identify uniquely the wanted instance. Attributes of
candidate keys, as it can be concluded from introductory
examples, are being transformed into OID attributes of
superclasses, complex attributes (which are also OIDs) and
simple attributes. We conclude that an instance of class can
be created only if at least one of following three conditions is
satisfied:

(a) the instances of at least one superclass of that class are
created;

(b) there are created instances of all classes on which the
complex attributes from that class reference and which
are made from attributes of one candidate key of relation,
from which that class is created;

(c) class contains all attributes of at least one candidate key
of relation from which that class is created.

Database Transformation from Relational to Object-Oriented Database and Corresponding Query Translation202

Data migration procedure is based on three sets of classes:
Start, Half-Finished and Finished. If a class is contained in
the set Finished, it means that all attributes of that class are
present, i.e. all instances of that class are completely
calculated. Of course, the data migration process is finished
when all classes are in the set Finished. Class is contained in
the set Half-Finished when all attributes of that class are not
present yet, i.e. when some attributes of that class have null
values on all instances of that class but instances are
nevertheless created and they can be identified uniquely,
because there are present all crucial attributes described in
(a), (b) and (c). Set Start contains classes for which none of
three conditions (a), (b) or (c) is satisfied, i.e. classes whose
instances still can not be created. Data conversion process (in
basic terms) can be described as follows.

First (Step 1), for each class, which is contained in the set
Start, we have to check does that class satisfies at least one of
the conditions (a), (b) or (c), or not. If it does, instances of
that class can be created with all, in that moment, present
attributes. Instances are created using INSERT operation on
object-oriented system. Depending on the fact that, are all
attributes present or only some of them, we add a class to the
set Finished or Half-Finished and remove it from the Start
set. Depending on which one of conditions (a), (b) and (c)
that class satisfies, we have to define a way by which we will
later identify instances of that class.

In Step 2, for each class that is contained in the set Half-
Finished, we have to check which of formerly absent
attributes are present now, i.e. which of them are object
identificators of instances of classes which, in that moment,
are contained in the set Finished or Half-Finished. All that
attributes (if any) have to be updated, i.e. for each tuple in
relation from which that class is created, has to be identified
the corresponding instance of that class and attributes of that
instance, that became present now, have to be calculated with
corresponding UPDATE operation of object-oriented system.
If all attributes of a class are present now, that class is being
removed from the set Half-Finished and added to the set
Finished. These two steps are being repeated until all classes
are contained in the set Finished.

We point out that input of data migration algorithm is the
initial relational database and data structures, in which the
information on the process of schema transformation process
is saved. The output is a sequence of INSERT and UPDATE
operations, which can be directly executed by the object-
oriented system.

3.1.2. Construction of INSERT and UPDATE
expressions
Now we have to consider creation and updating of instances
of the classes. As we said earlier, this can be done by
INSERT and UPDATE operations on object-oriented system.

We assume the object-oriented query syntax is similar with
relational SQL. Instead of formal definition of query
language, we shall describe some of its main features in few

examples. The query (in some hypothetical database) ″Find
all graduated students whose average mark is above 9 and
whose science adviser has an office in the building with
number 3″ can be expressed as ‘SELECT
Student.Adviser.Name FROM Student WHERE (Student:
Average>9).(Adviser:).(Office:).(Building: Number=3)‘.
Here, Adviser is a complex attribute of class Student.
Example for insert operation is: ‘INSERT INTO
student(Name, Average, Adviser) VALUES (John, 8.7,
SELECT Adviser FROM Adviser WHERE (Adviser: Name
=Peter).(Degree =Ph.D.)’. By this query, we create an
instance of class Student, for a student with name John,
whose average mark is 8.7 and whose adviser is a Ph.D. with
name Peter. If we want to change advisor of student John, we
use an update operation: ‘UPDATE student(Adviser)
VALUES (SELECT Adviser FROM Adviser WHERE
(Adviser: Name =Jack)) WHERE Name =John’. The part of
this query ‘WHERE Name =John’ is used to locate wanted
instance. For a more formal definition of some aspects of this
object-oriented query language see, for example, [5].

Now, we can proceed with the explanation of creation and
updating of instances of the classes. To the execution of
update operation on OID attribute in one class, which is
made from candidate or foreign key of relation from which
that class is created, or, in the other words, to assigning to
that attribute a value of object identificator of instance of
some other class, corresponds, in essence, an execution of
join operation on candidate keys in relations (or on a foreign
key in one relation and a candidate key in the other relation),
from which those two classes are created. But, the attributes
of candidate key in second relation may not be present in
definition of class which is made from that relation. Their
role can be played by attributes from some of superclasses of
that class or attributes of class to which corresponding
attribute refer. If we know values of those attributes from
first relation, by equalizing these attributes and attributes
from the second class, we can identify corresponding
instance from the second class, i.e. we can find its OID and
assign that OID to the complex attribute of the first class.
Process of getting information about which attributes
correspond to each other, goes together with data migration
process. That information has to be obtained for all candidate
keys and it is saved in so called query-sets [10], which we
use for construction of INSERT an UPDATE expressions. In
this paper, due to space limit, we do not formally describe
this data migration algorithm. Instead, we consider a simple
example of its work.

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 203

3.1.3 Example of the first data migration
algorithm
Let be given the relational database showed on Fig. 1.

sport_car car

sa_id Sa_tires id Name

1 1 1 Jaguar

3 2 2 Ford

3 Ferari

sport_tires tires
st_no no manufacturer t_president

1 1 bridgestone 4
2 2 good year 3

3 tiger 2

driving race_driver
d_driver d_car rd_id rd_name

123 1 123 hill
234 3 234 prost

345 alesi

president
p_no name p_car

2 mark 1
3 john 1
4 peter 2

Figure 1. Sample relational database

Candidate keys are the first attributes from the left in all
relations, except in relation driving where the candidate key
is pair (d_driver, d_car).
Foreign keys are sport_car.sa_id ⊂ car.id, sport_car.sa_tires
⊂ sport_tires.st_No, sport_tires.st_No ⊂ tires.No,
tires.t_president ⊂ president.p_No, president.p_car ⊂ car.id,
driving.d_driver ⊂ race_driver.rd_id and driving.d_car ⊂
car.id .

Transformed schema is:

 class sport_car class car
 inherits car; id : integer;
 racing_tires: ref sport_tires; name : string;
 end; end;

 class sport_tires class tires
 inherits tires; no : integer;
 end; manufacturer :string;

 director :ref president;
 end;

 class driving class race_driver
 driver : ref race_driver; rd_id :integer;
 vehicle: ref car; rd_name: string;

 end; end;

 class president
 p_no : integer;
 name : string;
 director_car : ref car;
 end;

We assume that the algorithm investigates relations/classes in
above order. The algorithm creates the following queries:

INSERT INTO car(id, name) VALUES (1, jaguar);
INSERT INTO car(id, name) VALUES (2, ford);
INSERT INTO car(id, name) VALUES (3, ferrari);
INSERT INTO tires(no, manufacturer, director) VALUES (1,
Bridgestone, NULL);
INSERT INTO tires(no, manufacturer, director) VALUES (2,
good year, NULL);
INSERT INTO tires(no, manufacturer, director) VALUES (3,
tiger, NULL);
INSERT INTO race_driver(rd_id, rd_name) VALUES (123,
hill);
INSERT INTO race_driver(rd_id, rd_name) VALUES (234,
prost);
INSERT INTO race_driver(rd_id, rd_name) VALUES (345,
alesi);
INSERT INTO president(p_no, name, director_car) VALUES
(2, mark, SELECT car FROM car WHERE (car: id=1));
INSERT INTO president(p_no, name, director_car) VALUES
(3, john, SELECT car FROM car

WHERE (car: id=1));
INSERT INTO president(p_no, name, director_car) VALUES
(4, peter, SELECT car FROM car

WHERE (car: id=2));
UPDATE tires
 SET director= (SELECT president FROM president

 WHERE (president: id=4)
WHERE tires.no=1;
UPDATE tires

SET director=(SELECT president FROM president
 WHERE (president: id=3))

WHERE tires.no=2;
UPDATE tires
 SET director=(SELECT president FROM president

 WHERE (president: id=2))
WHERE tires.no=3;
INSERT INTO sport_car(car-OID, racing_tires) VALUES
(SELECT car FROM car

WHERE (car: id=1), NULL);
INSERT INTO sport_car(car-OID, racing_tires) VALUES
(SELECT car FROM car

 WHERE (car: id=3), NULL);
INSERT INTO sport_tires(tires-OID) VALUES
 (SELECT tires FROM tires WHERE (tires: no=1));
INSERT INTO sport_tires(tires-OID) VALUES
 (SELECT tires FROM tires WHERE (tires: no=2));
INSERT INTO driving(driver, vehicle) VALUES

Database Transformation from Relational to Object-Oriented Database and Corresponding Query Translation204

 (SELECT race_driver FROM race_driver
WHERE (race_driver: rd_id=123),

 SELECT car FROM car WHERE (car: id=1));
INSERT INTO driving(driver, vehicle) VALUES
 (SELECT race_driver FROM race_driver

 WHERE (race_driver: rd_id=234),
 SELECT car FROM car WHERE (car: id=3));
UPDATE sport_car
 SET racing_tires= (SELECT sport_tires

FROM sport_tires WHERE (sport_tires: no=1))
 WHERE id=1;
 UPDATE sport_car
 SET racing_tires=(SELECT sport_tires

FROM sport_tires WHERE (sport_tires: no=2))
 WHERE id=3;

3.2 The second data migration algorithm
This algorithm is based on the assumption that each class in
object-oriented schema contains not only those attributes,
which are described in schema transformation process, but
also all the other attributes from initial relation in the
relational database, from which that class is created in
schema transformation process. Those are the attributes,
which are deleted from the class declarations in the end of
the schema transformation process.

The main idea of this algorithm is to add to the class
description some redundant attributes, which contain all
necessary information for fast unique identification of
instances of that class. After that, connection of instances of
this class with instances of other classes can be made with the
help of these attributes. First, all instances of all classes are
being created, and after that instances are being connected.
When an instance of some class is being created, the object-
oriented database management system assigns to it the unique
OID. Irrelevant of the situations, described earlier (3.1),
every instance can always be identified here, because it now
contains all necessary attributes from corresponding relation.
In this case, instances can be connected to each other in
arbitrary order, i.e. the order of their creation is not
important. The algorithm can be described as follows.

First, at Step 1, using appropriate expression all attributes
existing in the corresponding relation r, and which do not
exist in the definition of the class Ñ are being added to the
definition of class Ñ, for each class C in object-oriented
schema. Syntax of that expression can be, for example,
ALTER CLASS Ñi ADD ... Attributes which are being added
are those that were contained in foreign or candidate keys
which created inheritance relationship between two classes.

Further, at Step 2, all instances of all classes are being
created. In essence, at this step, tuples from relational
database are directly being copied into class instances in the
object-oriented database.

At Step 3 corresponding class instances are being connected
to each other, i.e. using UPDATE expressions of the object-
oriented query language, values to OID-attributes are being

assigned. Using only one UPDATE operation all instances of
one class can be connected to all necessary instances of other
classes.

Finally, at Step 4 all attributes that were added in Step 1, are
being deleted, using appropriate expression (for example,
DROP).

3.2.1. Example of the second data migration
algorithm
Let's consider an example of execution of this algorithm (we
use the database from example in 3.1.3, Fig.1).

At Step 1 the following attributes are being added to the
object-oriented schema:

sport_car.sa_id, sport_car.sa_tires, sport_tires.st_no,
tires.t_president, president.p_car, driving.d_driver and
driving.d_car.

At Step 2 the following expressions are being created:

INSERT INTO sport_car(sa_id, sa_tires, car-OID,
racing_tires) VALUES (1, 1, NULL, NULL);
INSERT INTO sport_car(sa_id, sa_tires, car-OID,
racing_tires) VALUES (3, 2, NULL, NULL);
INSERT INTO car(id, name) VALUES (1, jaguar);
INSERT INTO car(id, name) VALUES (2, ford);
INSERT INTO car(id, name) VALUES (3, ferrari);
INSERT INTO sport_tires(st_no, tires-OID) VALUES (1,
NULL);
INSERT INTO sport_tires(st_no, tires-OID) VALUES (2,
NULL);
INSERT INTO tires(no, manufacturer, t_president, director)
VALUES (1, bridgestone, 4, NULL);
INSERT INTO tires (no, manufacturer, t_president, director)
VALUES (2, good year, 3, NULL);
INSERT INTO tires (no, manufacturer, t_president, director)
VALUES (3, tiger, 2, NULL);
INSERT INTO driving (d_driver, d_car, driver, vehicle)
VALUES (123, 1, NULL, NULL);
INSERT INTO driving (d_driver, d_car, driver, vehicle)
VALUES (234, 3, NULL, NULL);
INSERT INTO race_driver(rd_id, rd_name) VALUES (123,
hill);
INSERT INTO race_driver(rd_id, rd_name) VALUES
(234, prost);
INSERT INTO race_driver(rd_id, rd_name) VALUES (345,
alesi);
INSERT INTO president(p_no, name, p_car, director_car)
VALUES (2, mark, 1, NULL);
INSERT INTO president(p_no, name, p_car, director_car)
VALUES (3, john, 1, NULL);
INSERT INTO president(p_no, name, p_car, director_car)
VALUES (4, peter, 2, NULL);

At Step 3 the following expressions are being created:

UPDATE sport_car

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 205

 SET car-OID=(SELECT car FROM car
WHERE (car: id=sport_car.sa_id)),

 SET racing_tires=(SELECT sport_tires FROM
sport_tires WHERE

 (sport_tires: st_no= sport_car.sa_tires));
UPDATE sport_tires
 SET tires-OID= (SELECT tires FROM tires

 WHERE (tires: no=sport_tires.st_no));
UPDATE tires
 SET director= (SELECT president FROM president

 WHERE (president:p_no= tires.t_president));
UPDATE driving
 SET driver=(SELECT race_driver FROM race_driver
 WHERE (race_driver: rd_id= driving.d_driver)),
 SET vehicle=(SELECT car FROM car

WHERE (car: id= driving.d_car)) ;
UPDATE president
 SET director_car= (SELECT car FROM car

WHERE (car: id= president.p_car));

At Step 4, attributes, which were added in Step 1, are being
deleted.

It is obvious, that this algorithm is optimal in terms of speed.
On the one hand, one INSERT operation creates each
instance directly from appropriate relation tuple, and, on the
other hand, all instances of some class are being connected to
all necessary instances of the other classes using only one
UPDATE expression.

In an object-oriented database, concepts of complex
attributes and inheritance are represented by OID-attributes.
In relational database those concepts are represented by
foreign and candidate keys, which can contain a large
number of attributes. Because of that, object-oriented
database, typically, has smaller size than the relational
database. A disadvantage of the presented algorithm is the
creation of the large amount of redundant information, which
in extreme situations can be approximately near the size of
the relational database. It can be a disadvantage when using
very large databases.

It can be concluded that the first algorithm is optimal in
terms of memory use (i.e., the size of database) and the
second one is optimal in terms of speed. The advantage of
the second algorithm is in its relative simplicity.

4. Translation of relational queries to
equivalent object-oriented queries
We describe here a method for translation of SELECT-
queries into corresponding object-oriented queries. We
assume that both the relational and object-oriented queries
are in SELECT-FROM-WHERE format. SELECT-clause of
query specifies the names of relations/classes attributes,
which are the result of query execution. FROM-clause of
query specifies relation tuple variables (RTV) in case of
relational query, and class instance variables (CIV) in case of
object-oriented query. With the help of R(RTV) (C(CIV)) we
shall designate the relation (class), for which RTV (CIV) is

defined. WHERE-clause of query specifies a qualifying
condition of query, i.e. condition, which have to be satisfied
by current values of RTV (CIV) in order to include these
values into the result. WHERE-clause of object-oriented
query can also contain the path expressions. We assume that
WHERE-clause of relational SQL query is given in
conjunctive form. Without loss of generality, we assume that
relational queries are not nested since nested relational
queries can always be translated to equivalent unnested
queries ([6]). Since relational WHERE predicate has
conjunctive form, the translated object-oriented predicate is
also in conjunctive form. The major problem in translation of
a relational SQL query to equivalent object-oriented query, is
the WHERE-clause translation, because there is a drastic
difference between relational predicates and object-oriented
predicates. The relational predicates, which consist of joins
and selections and which do not contain path expressions, are
being translated into object-oriented predicates, which
contain path expressions.

Translation of the WHERE-predicate is being carried in three
steps. First, a relational predicate graph is being created from
the relational predicate. At second step, this graph is being
converted to the corresponding object-oriented predicate
graph. Finally, the object-oriented predicate is being obtained
from the object-oriented predicate graph. Some ideas of this
process, with significant modifications, are taken from [5]. In
difference to [5], during the translation of the relational
WHERE-predicate, the SELECT and FROM-clauses of
query are being translated, also.

4.1. Construction of relational predicate graph
from WHERE-clause of SQL query
For relational predicate RW in WHERE-clause of relational
SQL-query we define its graph: G(RW) = (RV, RE), where
each node from the set of nodes RV represents one RTV,
which appears in RW-predicate (i.e. it also appears in
FROM-clause of SQL-query), and each edge between two
nodes, which is in RE, represents some join predicate
between two RTV in RW. Each node is annotated by all
selection predicates of corresponding RTV. Each edge
between two nodes, for example, edge between RTV1 and
RTV2, is annotated by a join predicate of the form 'RTV1⋅A1

comparator RTV2⋅.A2', where A1 and A2 are attributes of the
relations r1=R(RTV1) and r2=R(RTV2). The relational
predicate graph of WHERE-clause of SQL-query contains
the same information as the predicate itself.

Example

Let be given the query: "Find the average mark for all
graduated students, which passed a math exam at June, 15."
Corresponding SQL-query is:

SELECT student.average
FROM exam, graduated_student, student
WHERE (student.student_id=graduated_student.student_id)
 AND (student.department=graduated_student.department)
 AND (exam.student_no=graduated_student.student_id)

Database Transformation from Relational to Object-Oriented Database and Corresponding Query Translation206

 AND (exam.department=graduated_student.department)
 AND (exam.date=15 jun)
 AND (exam.course_name=mathematics)

It is assumed here, that relation graduated_student and
relation student are being joined by candidate keys, and
relation exam is being joined with the relation
graduated_student using a foreign key. It is also assumed,
that attribute course_name has been deleted from class exam
during schema transformation process and that it is now
belonging to the class course. From WHERE-predicate of
this query we obtain the graph shown in Fig. 2.

4.2. Construction of the object-oriented
predicate graph from the relational predicate
graph
Let RW be a WHERE-clause of relational SQL-query of the
relational schema. The graph of this relational predicate
G(RW)=(RV, RE) is being transformed into annotated graph
OG(RW)=(OV, OE1, OE2), where OV is a set of nodes, OE1

is a set of directed edges, and OE2 is a set of undirected
edges. Each node from OV corresponds to one class instance
variable (CIV), which corresponds to the some class in the
object-oriented schema.

There are three kinds of edges in the object-oriented
predicate graph: directed edge with annotation, directed
edge without annotation, and undirected edges with
annotation. A directed edge from CIV1 to CIV2 with
annotation ANNOTATION corresponds to implicit join of
C(CIV1) and C(CIV2) classes by complex attribute named
ANNOTATION in C(CIV1) class, whose domain is class
C(CIV2). A directed edge from CIV1 to CIV2 without

annotation corresponds to implicit join of an instance of class
C(CIV1) and corresponding instance of its superclass
C(CIV2). An undirected edge from CIV1 to CIV2 with the
annotation ANNOTATION, where ANNOTATION is an
expression of form 'CIV1.A1 comparator CIV2.A2',
represents the explicit join between instances of classes
C(CIV1) and C(CIV2) on attributes A1 and A2.

Transformation of G(RW) graph to OG(RW) graph consists
of three parts: transformation of nodes, transformation of
edges and transformation of node annotations.

Transformation of nodes

Transformation of nodes is being performed as follows. First,
for each node with name RTV in RV-set of nodes of G(RW)
graph, it has to be created a node in OV, with the same name.
This node corresponds to instance variable of the class,
which was created from relation, to which the node from set
RV corresponds. The new node in OV receives the same
annotations as the node of the graph GW, from which it has
been created. In our example we obtain the graph with three
nodes: EXAM, GRADUATED_STUDENT and STUDENT.

Transformation of edges

Transformation of edges is being performed as follows. For
each pair of nodes, RTV1 and RTV2, in RV, let E be the set
of edges between these two nodes. This set is being divided
on the partitions, from which the edges of the object-oriented
graph are being created.

First, those edges that correspond to implicit join between the
class and superclass, are being transformed to directed edge
without annotation. In our example, the directed edge without
annotation from node GRADUATED_STUDENT to node
STUDENT, is being created. Further, there have to be
converted the edges that correspond to implicit join between
two classes, where one of them is the domain of complex
attribute of the other one. Those edges are being converted to
directed edge with annotation. In our example the directed
edge with graduated_student annotation (the name of the
complex attribute) from node EXAM to node
GRADUATED_STUDENT, is being created. All remaining
edges are being directly transformed to undirected edges with
annotation of the object-oriented graph, i.e. they are included
in set OE2. These edges, in essence, correspond to explicit
join.

Transformation of node annotations

Finally, it is necessary to transform the node annotations. The
node annotations of the relational graph correspond to
selections in relational WHERE-predicate. Their
transformation is being performed depending on whether an
attribute was removed from the definition of a class, which
was created during schema transformation from a relation,

 STUDENT

‘graduated_student.student_id =
student.student_id’

 ‘graduated_student.department=
student.department’

GRADUATED_STUDENT

 ‘graduated_student.Student_id=
 exam.student_no’

‘exam.department =
graduated_student.department’

 EXAM

Date='15 jun'
 course_name = mathematics

Figure 2. Example of relational predicate graph

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 207

which contained that attribute, on which selection is being
done.

The procedure ([11]) is recursive. In our example, for
selection 'course_name = mathematics', first, a new CIV for
the class course, which we can name COURSE, node
COURSE and a directed edge with annotation exam_course
from node EXAM to node COURSE are being created. The
procedure is being repeated for node COURSE and attribute
course_name. The attribute course_name remains in the class
course, and the node COURSE receives the annotation
'course_name =mathematics'.

The following object-oriented predicate graph is being
obtained (Fig 3):

 STUDENT

COURSE
 ‘course_name

 GRADUATED_STUDENT =mathematics’

 graduated_student exam_course

EXAM
 ‘date = 15 jun’

Figure 3. Example of the object-oriented WHERE-
predicate graph

4.3. Construction of object-oriented predicate
from its graph
Let us describe all basic constructions, which can occur in
the object predicate graph, and explain their semantics. The
main constructions are shown in a Fig. 4. In each
construction class the instance variables (CIV) are indicated
by large characters and the complex attributes, whose
domains are the classes appropriate to class instance
variables, which are situated at the ends of directed edges,
are indicated by small characters. Some of the annotations
may be empty strings.

 A b B c ... D e E

(a) A directed path

 A b B c ... D e E

 F g G h ... P t T

(b) An undirected bridge

 A E
 d1 e

 B d2 D
 f

 C d3 F

(c) A node associated with 3 or more edges

A b B c ... D e E

 f
 a

T t H h ... G g F

(d) A directed cycle

Figure 4 Basic constructions in object-oriented predicate
graph

Construction 1

In a Fig. 4(a) the following is assumed: (1) there is no
directed edge, which ends in the node A; (2) except node A,
no other node is connected to the any other node, except its
predecessor in the directed path; (3) no node appears more
than once in the directed path. Semantics of this construction
is that a traversal from A to Å is needed. In the object-
oriented WHERE-predicate definition it corresponds to the
expression:

 (A: Selection-on-A).(b: Selection-on-B).... (e: Selection-on-E) .

Construction 2

In a fig. 4(b) two directed paths are connected with an
undirected edge. It is possible that one or two of directed
paths have length equal to zero. Suppose that "E.Attribute1
Comparator T.Attribute2" is the annotation on the undirected
edge. This construction is translated to explicit join on simple
attributes.

(A: Selection-on-A).(b: Selection-on-B)... (e: Selection-on-
E).Attribute1

Comparator

(F: Selection-on-F).(g: Selection-on-G)....(t: Selection-on-
T).Attribute2

Construction 3

 This construction is represented in Fig. 4(c). If there are
three or more edges connected to a node, then all these edges
refer to the same instance of class, to which CIV,
corresponding to this node corresponds. For example, d1, d2,
d3, e, f must reference the same instance of class C(D). This
can be achieved by specifying a reference variable, which
corresponds to one of incoming edges. For example, in the
situation shown in Fig. 4(c), it is possible to define, that the
reference variable X corresponds to the path expression (A:
Selection-on-A).(d1: Selection-on-D). Of course, this has to
be added to FROM-clause of query. Then we obtain the
following object-oriented predicates:

Database Transformation from Relational to Object-Oriented Database and Corresponding Query Translation208

 (B: Selection-on-B).d2=X AND (c: Selection-on-C).d3=X AND X.
(e: Selection-on-E) AND X. (f: Selection-on-F)

Construction 4

 This construction is represented in Fig. 4(d). If we start the
evaluation, for example, from node A, then complex attribute
a of the class corresponding to CIV T, i.e. class C(T),
references the same instance of the class C(A). Therefore it is
possible to translate this construction into the following
object-oriented predicate:

(A: Selection-on-A).(b: Selection-on-B).... (d: Selection-on-D).(e:
Selection-on-E).(F: Selection-on-F).(g: Selection-on-G)....(h:
Selection-on-H).(t: Selection-on-T) (a:)= A.OID

We obtain various object-oriented predicates, if we start from
different nodes. Of course, all these predicates are
equivalent. An algorithm which traverses the graph according
to the semantics and which creates the object-oriented
predicate and whole object-oriented query is described in
[11]. In our example the following object-oriented query is
being obtained:

SELECT exam.graduated_student.average
FROM exam
WHERE (exam: date='15 jun').(exam_course: course_name

=mathematics)

We have described some of the main ideas of a method for
translation of SELECT queries. Using this result, we have
also developed methods for translation of UPDATE,
INSERT and DELETE queries.

5. Conclusion
In this paper we have discussed some aspects of database
transformation from relational to object-oriented database,
including query translation. We have described some of the
main ideas of a schema transformation algorithm, two
algorithms for data conversion and proposed a method for
translation of SELECT queries.

Acknowledgments
The author wishes to thank to Dr. Gordana Pavlovich-
Lazetich, from University of Belgrade, and to Dr. Lev
Nikolaevich Korolev, from Moscow State University, for
their help in his work.

References
1. Fong J. ″Converting Relational to Object-Oriented

Databases″. SIGMOD Record, Vol.26, No. 1, March
1997

2. Date, C.J. ″An Introduction to Database Systems ″, (6th

edition) Addison-Wesley Systems Programming Series.
1995

3. Ramanathan S., Hodges J. ″Extraction of Object-
Oriented Structures from Existing Relational Databases″.
SIGMOD Record, Vol.26, No. 1, March 1997

4. Piatetsky-Shapiro G., Frawley W. ″Knowledge
Discovery in Databases ″. AAAI Press / MIT Press,
California, 1991

5. Meng W., Yu C., Kim W., et al. ″Construction of a
Relational Front-end for Object-Oriented Database
Systems″. Proceedings of Ninth International Conference
on Data Engineering, Vienna, Austria, IEEE Computer
Society, 1993

6. Kim W. ″On Optimizing an SQL-like Nested Query″.
ACM TODS, 1982

7. Kim W. ″Introduction to Object Oriented Databases″.
The MIT Press, 1990

8. Stanisic P. "Transformacija relacionih baza podataka u
objektno-orijentisane”. MD thesis. University of
Belgrade, Belgrade, 1998

9. Stanisic P. "Schema Transformation from Relational to
Object-Oriented Database as a part of Database Reverse
Engineering Process". Mathematica Montisnigri, No. 9,
1998

10. Stanisic P. "Data Conversion from Relational to Object-
oriented Database" (in Russian). Vestnik Moskovskogo
Universita, Ser.15, No. 1, 1999 (accepted)

11. Stanisic P. "A Method for Translation of Relational
Queries into Equivalent Queries in Transformed Object-
Oriented Database" (in Russian). Numerical methods and
computational experiment, edited by A.A. Samarsky, V.I.
Dmitriev, 1998 (accepted)

