
Event Driven Computations for Relational Query Language

L.Yu.Ismailova

larisa@jurinfor.msk.ru

K.E.Zinchenko

kz@msu.jurinfor.ru

L.V.Bourmistrova

blv@msu.jurinfor.ru

Vorotnikovskiy per., 7, bld. 4
JurInfoR-MSU Institute for Contemporary Education

Moscow, 103006, Russia

Abstract

This paper deals with an extended model of
computations which uses the parameterized
families of entities for data objects and reflects
a preliminary outline of this problem. Some
topics are selected out, briefly analized and ar-
ranged to cover a general problem. The au-
thors intended more to discuss the particu-
lar topics, their interconnection and computa-
tional meaning as a panel proposal, so that this
paper is not yet to be evaluated as a closed jour-
nal paper. To save space all the technical and
implementational features are left for the fu-
ture paper.

Data object is a schematic entity and modelled
by the partial function. A notion of type is ex-
tended by the variable domains which depend
on events and types. A variable domain is built
from the potential and schematic individuals
and generates the valid families of types de-
pending on a sequence of events. Each valid
type consists of the actual individuals which are
actual relatively the event or script. In case
when a type depends on the script then corre-
sponding view for data objects is attached, oth-
erwise a snapshot is generated. The type thus

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the CSIT copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the In-
stitute for Contemporary Education JMSUICE. To copy otherwise, or to
republish, requires a fee and/or special permission from the JMSUICE.

Proceedings of the Workshop on Computer Science and In-
formation Technologies CSIT’99
Moscow, Russia, 1999

determined gives an upper range for typed vari-
ables so that the local ranges are event driven
resulting is the families of actual individuals.
An expressive power of the query language is
extended using the extensional and intentional
relations.

Key words: event driven model, individual,
partial element, state, script, type, variable do-
main

Introduction

An event driven models are known as reflecting the flow
of changes in the problem domains. In this paper a unit
called as data object is persistent under events which en-
force changes in its state. Thus, the data object is ob-
served as a process in a mathematical sense.

A data object captures both the syntax and semantic
features to increase the flexibility of the entire compu-
tational model. The reasons are to distinguish the outer
events which can parameterize the behaviour of the ob-
ject to the contrast to the inner events. The set of events
is determined as a script giving rise to the dynamic fea-
tures of data objects.

The inner events enable the evolution of the object
or of the sets of objects and can enforce to change its
property.

A short outline of logical background is given in Sec-
tion 1. The taxonomy of actual, potential and virtual
individuals is used to determine the computation prin-
ciples for a class of statements. Both the atomic and
compound statements are treated.

In Section 2 the classes of propositional, actual, pos-
sible and virtual concepts are outlined and covered.

Section 3 includes the main equations for evaluation
principles. The constructs for types and variable do-
mains are reviewed.

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 43



The evaluation of intentional and extentional predi-
cates in briefly studied in Section 4.

Some features of the event driven relational model
are indicated in Section 5. The definitions are given
using the formal descriptions which generate the addi-
tional terms. The subclass of descriptions for relations
with associated formulae is called as restrictions.

The extensions for query language are discussed in
Section 6 which are based on evaluation within the do-
main structure. This structure is based on the notion
of variable domains. The computational features of
set theoretic operations are observed. The generalized
junction operation is introduced and studied relatively
events and scripts used as extra parameters.

The main computational ideas are according to the
domain structures studied in [Wol98]. An approach
to common types and abstractions generalizes those
in [CW85] and is closer to [EGS91]. An approach to
construe the variable domains, as in [Sco80], appears
to be fruitful to bring into a relational model the event
sensitivity, especially when a meaning of ‘event flows’ is
used [Sco71]. Some other features for object-oriented
extensions for relational model, but under restricted as-
sumptions, are studied in [Bee90], [MB90], they are
used in this paper but in a modified form.

The preliminary variant of this draft paper was
accented more to the properties of a relational
model [Ism98]. The architectures, samples and imple-
mentations are outlined in [IZ96]. The feasibility of
triggering events is covered in [IZ97].

1 Logical background

A general aim is to determine the idealized mathemat-
ical entity with a sensitivity to the events which occur
within the computational environment. There is no
reason to restrict consideration to the constant func-
tions, thus both the functions and their arguments are
assumed to be dependent on the events.

A common and general idea to evaluate the expres-
sions means the association with a pair of objects, func-
tion f and argument a, some object f(a) by applying
" function to its argument, which gives the meaning of
the function for this argument: "[f; a] = f(a). Further
advance would be achieved supposing that the func-
tions and their arguments are schematic and are not re-
stricted to the class of total functions. A strong candi-
date to such an entity is the individual.

Thus, the notion of evaluation is based on the in-
duced notion of individual. To determine this notion
assume that these entities can be collected into the do-
main H . This is an important property of the individ-
uals, and we need, indeed, only the possibily to con-
strue this collection. Hence, this assumption seems to
be week and not restrictive.

Let the domain H be determined before the con-
structing any theory based on the individuals. Other-
wise, the resulting theory could be contradictive and
non-persistent. The domain H is assumed to be non-
empty and, in fact, is the domain of all the potential in-
dividuals, which are related to some theory. ‘Possible’,
or ‘potential’ means that they are schematic and would
be implemented into the valid sequences of the actual
states under some events. Any case they are possible
relatively, e.g. some existing theory of objects

1.1 Interpretation with the individuals

Now the events are simulated with the elements of some
set I , and the particular event is represented by the in-
dex i 2 I .

For fixed set I of some indicies i the sets of actual in-
dividuals are generated by Ui � H for any i 2 I . There
is no one-to-one correspondence between Ui and i be-
cause the element of I may be additionally structured.
The elements i 2 I are the events, and the truth values
of expression are evaluated relatively the elements of I .

This means that to evaluate the expressions for some
language we need at the first stage to fix the set I and
the family

Ui � H � V;

where V is the set of virtual individuals. The truth value
of a statement depends on i 2 I , and this principle cap-
tures the distinct parts of the entire statement. Let 1
and 0 be the constants true and false respectively. The
set 2 is determined by

2 = f0; 1g

and gives the set of truth values.

1.2 Atomic statement

Atomic statements are the most elementary units in a
language and should model the desired event sensitiv-
ity. This property is below left to a semantical consider-
ation.

For any statement � the function k�k means the
evaluation of � relatively the given interpretation1,
which is defined on I with the values from 2. Thus,

k�ki = 1

means that � is true relatively i. Some other explana-
tion has a sense that ‘event i enforces �’. Note, that fi,
f(i), and fi are just the notational variants. The set of
all the functions, which are determined on I and range
2 is denoted by 2I , and

k�k : I ! 2 and k�k 2 2I

1The statements are assumed to be the closed formulae. This
means that they do not contain free variables. Hence, � is closed.

44 Event Driven Computations for Relational Query Language



are the notational variants with the meaning that

k�ki : 2; or k�ki 2 2

for i 2 I , i.e. k�ki = true or k�ki = false.

1.3 Compound statements

For the logical language with the connectives and quan-
tifiers a value of the expression is to be determined from
the values of its parts. Let the connectives be :, ^ and
_ and quantifiers be 8, 8(�), 9 and 9(�). The evaluation
of a statement with the connectives is defined as shown
in Figure 1:

To evaluate the quantifiers the constants �c for any c 2
V are added:

k�cki = c

All the evaluation shown in Figure 2 are valid.

2 Individual concepts
The description I operator is now used to introduce in-
dividual concept. This operator selects out the individ-
uals.

2.1 Individualizing

To determine operator of the description the singletons
are to be established.

Definition 2.1 (Individual). An individual c is deter-
mined by the singleton fcg as shown in Figure 3:

In the Definition 2.1 for selected i 2 I the value
k�(�h)ki for any h 2 H gives the unique h. Then (I)
generates a possible value of the description relatively i,
and this value is called c. This means that the descrip-
tion is a function from I into H :

kIx:�(x)k : I ! H; kIx:�(x)k : i 7! c;

where c is an element of the singleton as in the defini-
tion above.

The principle (I(�)) generates the actual individuals
as follows:

kI(�)x:�(x)k : I ! Ui; kI(�)x:�(x)k : i 7! c;

where c 2 Ui.

2.2 Building the concepts

Note that the values of the descriptions range the do-
main H of possible individuals whenever the values of
the terms range the domain V of virtual individuals.
Thus, the values of terms range the functional space V I .

Definition 2.2 (Concept). The elements of functional
spaces 2I , U I

i , HI , and V I are called the propositional,
actual, possible, and virtual concepts respectively.

The meaning of a concept is that this is the function
which varies depending on the assignments, or events
from I giving rise to the set of values – not to unique
value. For instance, the concepts for the term � and
formula � are respectively the following values:

k�k : I ! V; k�k : I ! 2

Note that k�k is an intension of term � and k�ki is an
extension of term � relatively i 2 I .

A semantic principle is that the intension of the ex-
pression is a function of the intensions of its parts.

3 Outline of data model

A general view to the computational model is to ob-
serve its arbitrary element as a data object. The most
important features are neutrality, adequacy and seman-
tical orientation.

3.1 Computational features

A neutrality results from the principles of computations
which are implemented within the host system. The
main rules are as follows:

k[A;B]k = hkAk; kBki and
kABk = " � hkAk; kBki;

where [�; �] and h�; �i are the different variants of pairing
operator, and " is an explicite application. Any object
is evaluated according these rules. The first of them de-
termines an evaluation of the finite sequences and the
second rule indicates an application the function A to
the argument B. In particular, a function can indicate
the operator from a relational language, and an argu-
ment gives its operands. As follows from these rules, an
evaluation is independent on any assignment, or event.

An adequacy takes into account the layers of an eval-
uation when the variables range the variable domains.
The variables are understood as driven by the events i
from a set of all the events Asg so that wnehever a vari-
able x is of type T then kxki 2 HT (fig) for the variable
domain HT (fig) and the event i. When the events are
used within the evaluations then the following rules are
valid:

k[A;B]ki = [kAki; kBki] and
kABki = (kAki)(kBki);

which are similar to their neutral form above. The lay-
ers separate the dataobjects as shown in Figure 4.

The semantics is based on a definition of the evalu-
ation map k � k while a data object is dropped into the
triple

h concept, individual, statei

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 45



k:�ki = 1 iff k�ki = 0 (:)
k� ^	ki = 1 iff k�ki = 1 and k	ki = 1 (^)
k� _	ki = 1 iff k�ki = 1 or k	ki = 1 (_)

Figure 1: The evaluation of a statement with the connectives

k8x:�(x)ki = 1 iff k�(�c)ki = 1 for all c 2 H (8)
k8(�)x:�(x)ki = 1 iff k�(�a)ki = 1 for all a 2 Ui (8(�))
k9x:�(x)ki = 1 iff k�(�c)ki = 1 for some c 2 H (9)

k9(�)x:�(x)ki = 1 iff k�(�a)ki = 1 for some a 2 Ui (9(�))

Figure 2: Evaluations for quantifiers

kIx:�(x)ki = c iff fcg = fh 2 H : k�(�h)ki = 1g (I)
kI(�)x:�(x)ki = c iff fcg = fa 2 Ui : k�(�a)ki = 1g (I(�))

Figure 3: Determiantion of the individual

Figure 4: Layer 1: An individual h is determined by the evaluated description, so that h = kIx:�(x)k. Layer 0: An
individual h is now a map from events i to actual objects u, and u = h(i). On the other hand u is described using
the unique indentification principle. For simplicity, assume that �(x) = 	(x). Layer -1: An individual u � a is a
map from events to states, and a(j) = s.

46 Event Driven Computations for Relational Query Language



3.2 Types and variable domains

A type is determined by the description

T = Iyi : [A]8hi : A(yi(hi)$ k�ki)

for an arbitrary event i, where � is the generator (for-
mula), T is the type, h is an individual, A is a sort and
[A] indicates the powersort.

A domain is characterized via the type as follows:

HT (fig) = f~j~ : fig 7! Tg;

where ~ = hi. This means that whenever the event is
fixed then the domain has a usual definition.

In case of a variable domain HT (I), the definiton
above is generalized to the set of the events I so that

HT (I) = fhjh : I ! Tg;

and this is a family of the usual domains.
The concepts arise naturally, they depend both on

types and events and are generated as the subsets of
variable domains:

C(I) � HT (I)

4 Intensional operations
The aims to determine the intentional operations are
similar to those for quantifiers.

4.1 Intensional atomic predicate

An easiest example is the binary relation

R([�; � ])

where � and � are arbitrary terms and [�; � ] is an or-
dered pair. The awaited meaning of kR([�; � ])k is a
propositional concept 2I , and this is an evaluation of
this expression entirely. The principle of evaluation
gives the following:

kR([�; � ])ki = (kRki)(k[�; � ]ki)
= (kRki)([k�ki; k�ki])
= "[kRki; [k�ki; k�ki]]
= "[kRki; < k�k; k�k > i]
= ("� < kRk; < k�k; k�k >>)i

Example 4.1 (Intensional predicate). Here we give a
verification of type assignment for kR([�; � ])k and its
parts.

The domains for separate parts of the evaluated ex-
pression are examplified. To construe the assignment in
terms of type–subtype are tree like derivation is built.
The reasons for type assignment is as follows. The eval-
uations of terms � and � are k�k : V I and k�k : V I

respectively. A couple consisting of k�k and k�k has
the type V I � V I , and this is a kind of ordered pair:
< k�k; k�k >. Thus, kRk has a type from V I � V I into
2I . The derivation below should be read in a direction
from bottom to top:

k�ki : � k�ki : �

kRki : �! 2; k[�; � ]ki : �

(kRki)(k[�; � ]ki) : 2

The set of identities for type symbols is as follows:

� � V; � � � � �

and have the obvious solution � � V � V . A transition
to the concepts results in the derivation:

k�k : V I k�k : V I

kRk : V I � V I ! 2I ; k[�; � ]k : V I � V I

4.2 Extensional atomic predicate

This kind of predicates may be examplified by the usual
relations such that R � V � V .

Example 4.2 (Extensional predicate). An extensional
predicate is the constant. Let in a language this constant
be R which becomes R when evaluated. Then

k�R�ki = 1 iff [k�ki; k�ki] 2 R (R)

5 Event driven relational model
The main feature of this model is to support the mutual
communications between the various kinds of objects.
The application is based on the connections of meta-
data objects, data objects, and states both within a sep-
arate layer and between the distinct layers. Thus, the
establishing and support of the interconnections, as an
actual state, needs some extensible computational envi-
ronment with the additional means to declare and ma-
nipulate the data objects.

The sublanguage for metadata and data objects has
a semanitics which is sensitive to the event changes in
accordance with the consideration given in Section 4.

5.1 Existence of elements

In the discussion above all these objects are driven by
the events, and are partial in their nature. Their be-
havouir needs a special kind of logic. The logic of
partial objects naturally. as may be shown, relativizes
the quantifiers from the greater domains to the subdo-
mains.

The everyday mathematical practice gives the valid
examples when the existence of the objects is not well
understood. Thus the identity is supposed to be a trivial
relation. Indeed, ‘a = b’ is true when a and b are the

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 47



same. When they are not then ‘a = b’ is trivially false.
All of this is transparent when both ‘a’ and ‘b’ are the
constant identifiers. If a or b depends on the param-
eters then their properties are to be expressed by the
equations.

The more detailed analysis shows that conditionals
could be verified even though there is no complete
knowledge of their possible solutions. The hypothesis
or assumption is applied so as it is valid though its truth
value is not determined and it contains the parameters.

The notation ‘E(�)’ is the abbreviation for ‘� does
exist (physically)’, contrasting to ‘9(�)’ as ‘� can exist
(potentially)’.

All the general examples tend to the principle

E� , 9y:y = �;

where the variable y is unbound in the term � and
the expressions could be simplified. Thus, the ‘does-
hold’ element and ‘can-hold’ elements are to be distin-
guished.

Hence, the predicate of existence E is more vital than
the equality and has the priority with respect to the
equality.

5.2 Describing the elements

The existence of partial objects needs a special math-
ematical consideration. Generally the question under
discussion arises: is there an object with the predefined
properties and if so then what is its explicit construc-
tion? In any case the predicate E indicates those state-
ments that mention the actual objects.

The early discussions of descriptions were mainly in-
formal. Remark that descriptions fix the individualizing
functions. The purely logical reasons are the following.

There is no possibility to establish an arbitrary func-
tion by the explicit formula by its instantiations. As in
case of complementary values the instantiations are to
be indicated by some properties. The indirect way to in-
dicate the instantiations is called ‘definition by the de-
scription’ and is denoted by ‘I’. The descriptions are
analogous to quantifiers and incline to adopt the princi-
ple:

an entity is equal to the described one iff that entity
is the unique one with the predefined property.

To axiomatize the indicated principle of description for
any formula �(x) and variable y that is unbound in the
formula the following scheme is assumed:

8y[y = Ix:�(x) , 8x[�(x), x = y]]; (I)

hence, ‘the described entity is equal to the existent en-
tity’. Therefore if the described entity is not existent
then the description Ix:�(x) indicates the nonexistent

or indefinite object. The natural (and ambiguous) lan-
guages give a variety of the indefinite entities. Even the
rigorous mathematical languages contain the indefinite
objects. Thus the object Ix::x = x is nonexistent; the
object Ix:x = x does exist iff the domain contains at
least a single described element. The sound mathemat-
ical ground tends to generalizations. There are some
local universes that contain all the valid examples.

5.3 Generating the additional terms

The descriptions generate the additional terms. The
following theorem covers the general case.

Theorem 5.1. (i) For arbitrary formula �(x) where the
variable y is unbound the biconditional is valid:

EIx:�(x) , 9y8x[�(x), x = y];

(ii) EIx:�(x) ) �(Ix:�(x)):

Proof. The proof is straightforward by principle (I) and
the laws for equality and quantifiers having in mind the
biconditional:

EIx:�(x) , 9y:y = Ix:�(x):

The expanded version of a language when enriched by
the principle of description (I) induces the increase of
the total term amount. The additional terms are to be
introduced in all the axioms and rules.

5.4 Restrictions

The descriptions are the useful tool. They maintain the
local universes of discourse that are often called (prim-
itive) frames. Often the researcher is forced to declare
a system of restrictions that are assumed to be indepen-
dent objects. By the word let us create all the state-
ments concerning some formula �. At the moment do
not bother of a special language of restrictions that is
equipped with the diagrams to represent frames.

One of the possible solutions is given by the relations.
Herein the binary relation R is considered within the
universe generated by formula 	.

The relation of this kind are schematic. The descrip-
tions induce the basic representation of the object and
the result is called the ‘restriction’:

� j� � Ix[x = �&�] (rest)

for the variable x unbound both in � and in �.
The intuitive idea is transparent: the object � j� exist

and is equal to � while formula � is true. To apply it to
the schematic relation R, we describe the relation R in
a restricted way:

Rj	 � Iz[z = R[x; y]&	(x; y)]:

48 Event Driven Computations for Relational Query Language



In fact, � exists the less time than the universe object.
This kind of supervision is fruitful in higher order logic
when � j� could be an element of the class that does not
contain the whole �. In particular the relation R above
exists less time than the local universe given by the for-
mula 	. Thus the object R(x; y)j	(x; y) represents the
desirable class.

The restrictions and supplementary universe of dis-
course are the valuable tool. All the properties (1)–
(13) are understood within the schemata definitions. In
particular, R(x; y)j	(x; y) is assumed to be a simple
scheme relative (or restricted) by 	(x; y).

6 Query language
A language for the relational model, or R-language, is
just the embedded sublanguage of the computational
model. It depends on the means to identify the data
objects. In case to enable the evaluation of expressions
which are built from metadata, data and states this lan-
guage has to have more expressive power than just a
predicate calculus. Thus, the core language is based on
applicative computations and include the operators of
application and abstraction:

" : [object; object] 7! object;
(� � :�) : [variable; object] 7! object

where " takes a pair of objects f; x and results in f(x),
an application of f to x which in turn is the object, and
(� � :�) acts on one variable and one object resulting in
the object. This definition can be rewritten with the do-
mains H of the partial elements so that

" : H �H ! H;

(� � :�) : variable�H ! H

Both the definition and manipulation counterparts of
R-language are embedded in some applicative language
which is equipped with the type (sort) system.

For R-language the system of types (attributes) is
built as an inductive class of some metaobjects. On the
other hand, the inductive class of the objects is assumed
as a natural source for R-terms and R-formulae. The
atomic R-formula has a head with a predicate symbol
followed by the objects which are the subject constants.
Both the terms and formulae as typed.

6.1 Relational structure

The connection between the terms and data object
model is to be captured by a prescribed prestructure
which assigns to any type symbol � the corresponding
domain H� . There is a clear reason to select out the
applicative prestructure

(fH�g; f"��g);

where � and � are the parameters indicating the
metaobjects (types), H� is a family of concepts, "�� is
a family of corresponding applications:

"�� : H�!� �H� ! H�

The connection between R-formulae and data object
model needs in addition the evaluation map, so that

h(fH�g; f"��g); k � k�i

is the structure, where k � k� is the evaluation map,

k � k� : Tm�Asg !
Y
�

H�

where R-formulae are from a set Tm of all the terms
(of an applicative system !) and Asg is a class of the
assignments (events).

The evaluation k � k� can be naturally continued from
the class of atomic R-formulae to the class of arbitrary
R-formulae.

The main features of the computation model are the
following:

applicative background,

algebraic transparency,

natural correspondence of the objects and metaobjects
via (applicative) prestructure,

natural correspondence of the concepts and assign-
ments via a structure.

6.2 Evaluation

The evaluation map has some important particular
cases:

the standard relational model is generated in case of
fixing the of assignments Asg. This means an as-
sumption that Asg consists of a singular element.
Then the model properties are derived from

k � k : Tm!
Y
�

H�;

where H� is a family of dataobjects, and Tm is the
set of well defined expressions;

the metadata model is derivable from the structure
with a non-trivial set of assignments Asg, possibly,
with the inner structure.

In fact, the map k � ki : Tm!
Q

� H�(fig) is formally
used where domains H�(fig) correspond to the objects
h(i) 2 T .

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 49



The typed data objects are determined by the de-
scriptions. The type T corresponds to the formula � as
follows:

T = Iy : [A]8~ : A(y(~)$ �)

for any sort A.
Another important join operation, e.g. �-join, in-

volves a pair of relations. The counterpart relations are
identified by the formulae � and 	 respectively, their
join is determined by

8h; ~(�(h; ~)! �(h)&	(~));
8h(�(h)! 9z8~(�(h; ~)$ ~ = z))

The often used operations are the set theoretic opera-
tions and join-like operations.

6.3 Operations

As was noted above, a semantical analysis can be re-
stricted on the set theoretic and join operations without
loss of generality. The specific features of this analysis
is as follows:

the set theoretic operations are the compounds which
involve the pair of formulae to determine the coun-
terpart relations;

in case of join operations, besides evaluating the pair
of formulae, the interrelations between data ob-
jects and the objects from a computation environ-
ment must be established.

6.4 Set theoretic operations

The case study of set theoretic operations can be re-
stricted to the union, intersection and difference of
database domains. Let } be the notation for some of
the operations listed above. Then the resulting evalua-
tion in a neutral to the assignments notation leads to

k}[(�:�)h; (�:	)h]k = } � hk�k; k	ki � hJ; hi

This means that the steps of evaluation are as follows:

select out the operation },

select out the operands �:� and �:	,

generate the elements h from the operands,

the effect of the operation } is generated by select-
ing and accumulating the evaluated data objects h
which match the operation and operands.

This procedure is almost the same as an evaluation with
the standard data model with the important exeption:
both the operion and the operands can be the objects taken
from a computation environment.

The generalization to the evolvent f : B ! I in-
tends the dynamics of data objects leading to (in a neu-
tral form):

(}�hk�k; k	ki�hJ; hi)f = }�hk�kf ; k	kf i�hJ; h�fi;

where f in a subscript position indicates the restriction
so that ‘the events evolve along the evolvent (script) f ’,
giving the needed transition effect.

Note, that the equation above determines the view
shifting in accordance to the procedure as follows:

a) an old view i is fixed, and i 2 I ;

b) f -shifted evaluations of the operands are generated
resulting in k�kf and k	kf ;

c) the f -shifted data objects h � f are accumulated;

d) the relation thus generated is assigned to the new
view b, and b 2 B.

Note that the events evolve from I to B when the evol-
vent f : B ! I is considered. Another observation
leads directly to some important particular case when
f � 1I is an identity map. In this case the data model
gives up the dynamic behaviour becoming the static
model with a trivial script observing as an identity map.

6.5 Junction: generalized operation

Some other observation shows the way to bring in more
generality with the set theoretic operations. There is
not necessary to immediately and explicitly indicate the
operartions.

An implicite indication of the operation as an at-
tached procedure binds the selected out data objects
with some rule. In this case the evaluated expression
matches the equation below:

kJ[(�:�)h; (�:	)~]k = J � hk�k � hJ; hi; k	k � hJ; ~ii;

where J is called the ‘junction’ operation.
The evaluation procedure is similar to those for the

set theoretic operations } exepting the last step which
has to be modified as follows:

d0) a result of the junction J operation is generated by
selecting out and accumulating the evaluated data
objects h and ~ which separately match both the op-
eration and operands.

The dynamical behaviour is determined by the equation
shown in Figure 5. for the evolvent f : B ! I in a
neutral formulation. In case of f � 1I : I ! I for
identity map the static evaluation is considered.

An evaluation of junction has an important applica-
tion when the join-like operations are used. In this case
the expression of a language contains a conjunction &

50 Event Driven Computations for Relational Query Language



(J � hk�k � hJ; hi; k	k � hJ; ~ii)f = J � hk�kf � hJ; h � fi; k	kf � hJ; ~ � fii

Figure 5: The description of dynamics

k&[(��:)[h; ~];&[(�:�)h; (�:	)~]]k =
= & � hk�k � hJ; hh; ~ii;& � hk�k � hJ; hi; k	k � hJ; ~iii

Figure 6: The equation in a neutral form

of operands � and 	 as well as the attached by the con-
junction & the binary conditional �. The equation in a
neutral form is as shown in Figure 6.

For instance, assume that � 2 f=; 6=; <;>;��g, and
establish an evaluation procedure as follows:

select out the needed join operation �;

select out the operands � and 	;

select out the elements h and ~ from the correspond-
ing operands;

the result of join is generated by selecting out and
accumulating the evaluated data objects h and ~

which match the formula �([h; ~]).

Statics Let evolvent f be the identity map f � 1I :
I ! I .

The most significant case is for occurences of data
objects ~ whithin the formulae �[h; ~]:

�[h;

8>><
>>:

x

g(x)
[x; y]
x(y)

9>>=
>>;
]

For a constant binary relation � and a constant function
g the eveluation depends on the cases of ~:

atomic object k�[h; x]k = � � hh; xi

constant function k�[h; g(x)]k = � � hh; g � xi

ordered pair k�[h; [x; y]]k = � � hh; hx; yii

application k�[h; x(y)]k = � � hh; " � hx1I ; yii

Dynamics The dynamical behaviour with evolvent
f : B ! I drops down to the equations with atomic
objects depending on the same cases of ~ where i 2 I

and b 2 B as shown in Figure 7.
Note that i and b have a meaning of the views.

Conclusions
Some topics concerning the usefulness of partial ele-
ment are briefly outlined. At first, the partial elements

are used for generating the variable domains, and this
is a generalization of types giving rise to their valis fam-
ilies depending on the sequences of events.

Second, the partial elements as data objects are de-
termined using the formal descriptions. The approach
leads to generating the additional term. The class of
terms as was shown contains the restricted relations
which are formula driven.

Third, the partial elements are applied to study the
basic operation within event sensitive query language.

References

[Bee90] C. Beeri. A formal approach to object ori-
ented databases. Data&Knowledge Engineer-
ing, 5:353–382, 1990.

[CW85] L. Cardelli and P. Wegner. On understanding
types, data abstractions, and polymorphism.
Computing Syrveys, 17(4), December 1985.

[EGS91] H.-D. Ehrich, M. Gogola, and A. Sernadas. A
categorial theory of objects as observed pro-
cesses. In J.W. deBakker et. al., editor, Pro-
ceedings of the REX/FOOL School/Workshop,
volume 489 of Lecture Notes in Computer Sci-
ence, pages 203–228. Berlin, Heidelberg, New
York, Springer Verlag, 1991.

[Ism98] L.Yu. Ismailova. Event driven computations
for relational model. Talk at JMSU Institute
for Contemporary Education, March, April
1998.

[IZ96] L. Yu. Ismailova and K.E. Zinchenko.
Object-oriented tools for advanced applica-
tions. In B. Novikov and J.W. Schmidt, edi-
tors, Proceedings of the 3rd International Work-
shop on Advances in Databases and Informa-
tion Systems, volume 2, pages 27–31, Moscow,
September 1996. Moscow Engineering Physi-
cal Institute, Moscow 1996.

Workshop on Computer Science and Information Technologies CSIT’99, Moscow, Russia, 1999 51



atomic object k�[h; x]ki = (� � hh � f; x � fi)b

constant function k�[h; g(x)]ki = (� � hh � f; g � x � fi)b

ordered pair k�[h; [x; y]]ki = (� � hh � f; hx � f; y � fii)b

application k�[h; x(y)]ki = (� � hh � f; " � hxf ; y � fii)b

Figure 7: The dynamical behaviour with evolvent f : B ! I

[IZ97] L. Yu. Ismailova and K.E. Zinchenko. An
object evaluator to generate flexible applica-
tions. In V. Wolfengagen and R. Manthey,
editors, Proceedings of the 1st East-European
Symposium on Advances in Databases and In-
formation Systems, volume 1, pages 141–148,
St.-Petersburg, September 1997. Nevsky Di-
alect, St.-Petersburg 1997.

[MB90] F. Manola and A.P. Buchmann. A func-
tional/relational object-oriented model for
distributed data management: Preliminary
description. TM-0331-11-90-165, GTE Lab-
oratories Incorporated, December 31 1990.

[Sco71] D.S. Scott. The lattice of flow diagrams. In
Symposium on semantics of algorithmic lan-
guages, volume 188 of Lecture notes in math-
ematics, pages 311–378. Berlin, Heidelberg,
New York, Springer Verlag, 1971.

[Sco80] D.S. Scott. Relating theories of the �-
calculus. In J. Hinhley and J. Seldin, editors,
To H.B. Curry: Essays on combinatory logic,
lambda calculus and formalism, pages 403–
450. New York and London, Academic Press,
1980.

[Wol98] V.E. Wolfengagen. Event driven objects: Part
I. Talk at JMSU Institute for Contemporary
Education, March, April 1998.

52 Event Driven Computations for Relational Query Language


